Skip to main content
Log in

Dislocation-dynamics-based dynamic constitutive model of magnesium alloy

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Since the dynamic plastic deformation of magnesium alloy, a hexagonal close-packed metal, consists of dislocation slipping and twinning, it is assumed that the dynamic plastic deformation of magnesium alloy is controlled by the mechanism with lower resistance, i.e., dislocation slipping or twinning. So, the evolution law of dynamic plastic deformation of the alloy can be determined by that of the resistance of dislocation slipping or twinning. After the evolution equations of the deformation resistances are deduced, the dynamic constitutive model of magnesium alloy is developed in this work. The proposed model is further verified by describing the dynamic tensile and compressive deformation of AZ\(_{31}\)B magnesium alloy obtained by the split Hopkinson pressure bar device. It is observed that the simulations agree well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kelley, E.W., Hosford, W.F.: Plane-strain compression of magnesium and magnesium alloy crystals [J]. Trans. Metall. Soc. AIME 242(1), 5–13 (1968)

    Google Scholar 

  2. Staroselsky, A., Anand, L.: A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ\(_{31}\)B [J]. Int. J. Plast. 19, 1843–1864 (2003)

    Article  MATH  Google Scholar 

  3. Clayton, J.D.: A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire [J]. Proc. Royal Soc. Lond. A 465, 307–334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Eng. Fract. Mech. 21(85), 31–48 (1985)

    Article  Google Scholar 

  5. Zerilli, F.J., Armstrong, R.W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. J. Appl. Phys. 61(5), 1816–1825 (1987)

    Article  Google Scholar 

  6. Zerilli, F.J., Armstrong, R.W.: The effect of dislocation drag on the stress–strain behavior of F.C.C. metals [J]. Acta Metall. Et Mater. 40(92), 1803–1808 (1992)

    Article  Google Scholar 

  7. Lou, X.Y., Li, M., Boger, R.K., Agnew, S.R., Wagoner, R.H.: Hardening evolution of AZ\(_{31}\)B Mg sheet [J]. Int. J. Plast. 23(1), 44 (2007)

    Article  MATH  Google Scholar 

  8. Proust, G., Tomé, C.N., Kaschner, G.C.: Modeling texture, twinning and hardening evolution during deformation of hexagonal materials [J]. Acta Mater. 55(6), 2137–2148 (2007)

    Article  Google Scholar 

  9. Proust, G., Tomé, C.N., Jain, A., et al.: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ\(_{31}\) [J]. Int. J. Plast. 25(5), 861–880 (2009)

    Article  MATH  Google Scholar 

  10. Wang, H., Wu, P.D., Tomé, C.N., et al.: A constitutive model of twinning and detwinning for hexagonal close packed polycrystals [J]. Mater. Sci. Eng. A 555(5), 93–98 (2012)

    Article  Google Scholar 

  11. Yu, C., Kang, G., Kan, Q.: Crystal plasticity based constitutive model for uniaxial ratchetting of polycrystalline magnesium alloy [J]. Comput. Mater. Sci. 84(1), 63–73 (2014)

    Article  Google Scholar 

  12. Agnew, S.R., Özgür, D.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ\(_{31}\)B [J]. Int. J. Plast. 21(6), 1161–1193 (2005)

    Article  MATH  Google Scholar 

  13. Wu, P.D., Guo, X.Q., Qiao, H., et al.: A constitutive model of twin nucleation, propagation and growth in magnesium crystals [J]. Mater. Sci. Eng. A 625, 140–145 (2015)

    Article  Google Scholar 

  14. Kocks, U.F., Argon, A.S., Ashby, M.F.: Thermodynamics and Kinetics of Slip [M]. Pergamon Press, Oxford (1975)

    Google Scholar 

  15. Meyers, M.A., Benson, D.J., Vöhringer, O., et al.: Constitutive description of dynamic deformation: physically-based mechanisms [J]. Mater. Sci. Eng. A 322(1), 194–216 (2002)

    Article  Google Scholar 

  16. Shi, J.: Research on Deformation Properties and Dislocation Dynamic Model for 42CrMo Steel [D]. Shenyang Ligong University, Shenyang (2010)

    Google Scholar 

  17. Bhattacharya, R., Lan, Y.J., Wynne, B.P., et al.: Constitutive equations of flow stress of magnesium AZ\(_{31}\) under dynamically recrystallizing conditions [J]. J. Mater. Process. Technol. 214(7), 1408–1417 (2014)

    Article  Google Scholar 

  18. Christian, J.W., Mahajan, S.: Deformation twinning[J]. Prog. Mater. Sci. 39(1), 1–157 (1995)

    Article  Google Scholar 

  19. Xie, Q., Zhu, Z., Kang, G., et al.: Crystal plasticity-based impact dynamic constitutive model of magnesium alloy [J]. Int. J. Mech. Sci. 119, 107–113 (2016)

    Article  Google Scholar 

  20. Xiao, D.W.: Study of Dynamic Mechanical Properties and Constitutive Equation of Zirconium [D]. University of Science and Technology of China, Hefei (2008)

    Google Scholar 

  21. Lu, J.W., Sargent, G.A., Conrad, H.: A study of the mechanism of erosion in silicon single crystals using Hertzian fracture tests. 8th Int. Conf. Eros. Liq. Solid Impact 186–187(1), 105–116 (1995)

    Google Scholar 

  22. Yan, H.X.: Study on the Dislocation-Based Physical Constitutive Relations of Plastic Deformation of Metals [D]. Zhejiang University, Hangzhou (2011)

    Google Scholar 

  23. Sharma, D.K.J.N., et al.: Vibration analysis of axisymmetric functionally graded viscothermoelastic spheres [J]. Acta Mech. Sin. 30(1), 100–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Zhu, Z. & Kang, G. Dislocation-dynamics-based dynamic constitutive model of magnesium alloy. Acta Mech 228, 1415–1422 (2017). https://doi.org/10.1007/s00707-016-1784-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1784-1

Navigation