Skip to main content
Log in

A numerical study of hypoelastic and hyperelastic large strain viscoplastic Perzyna type models

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

For the case of metals with large viscoplastic strains, it is necessary to define appropriate constitutive models in order to obtain reliable results from the simulations. In this paper, two large strain viscoplastic Perzyna type models are considered. The first constitutive model has been proposed by Ponthot, and the elastic response is based on hypoelasticity. In this case, the kinematics of the constitutive model is based on the additive decomposition of the rate deformation tensor. The second constitutive model has been proposed by García Garino et al., and the elastic response is based on hyperelasticity. In this case, the kinematics of the constitutive model is based on the multiplicative decomposition of the deformation gradient tensor. In both cases, the resultant numerical models have been implemented in updated Lagrangian formulation. In this work, global and local numerical results of the mechanical response of both constitutive models are analyzed and discussed. To this end, numerical experiments are performed and different parameters of the constitutive models are tested in order to study the sensitivity of the resultant algorithms. In particular, the evolution of the reaction forces, the effective plastic strain, the deformed shapes and the sensitivity of the numerical results to the finite element mesh discretization have been compared and analyzed. The obtained results show that both models have a very good agreement and represent very well the characteristic of the viscoplastic constitutive model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lubliner J.: Plasticity Theory. McMillan, New York (1990)

    MATH  Google Scholar 

  2. Chaboche J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  MATH  Google Scholar 

  3. Ottosen N.S., Ristinmaa M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  4. Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, Berlin (1998)

    MATH  Google Scholar 

  5. Perzyna P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)

    Article  Google Scholar 

  6. Ponthot J.P.: Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. Int. J. Plast. 18, 91–126 (2002)

    Article  MATH  Google Scholar 

  7. García Garino C., Ribero Vairo M.S., Andía Fagés S., Mirasso A.E., Ponthot J.P.: Numerical simulation of finite strain viscoplastic problems. J. Comput. Appl. Math. 246, 174–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. García Garino C., Oliver J.: Un modelo constitutivo para el análisis de sólidos sometidos a grandes deformaciones. Parte I: formulación teórica y aplicación a metales. Rev. Int. Metod. Numer. 11, 105–122 (1995)

    Google Scholar 

  9. García Garino C., Oliver J.: Un modelo constitutivo para el análisis de sólidos sometidos a grandes deformaciones. Parte II: implementación numérica y aplicaciones. Rev. Int. Metod. Numer. 12, 147–169 (1996)

    Google Scholar 

  10. Lee E.: Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    Article  MATH  Google Scholar 

  11. García Garino, C.: Un modelo numérico para el análisis de sólidos elastoplásticos sometidos a grandes deformaciones. Ph.D. thesis, Universidad Politécnica de Catalunya, Barcelona (1993)

  12. Simo J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 68, 1–31 (1988)

    Article  MATH  Google Scholar 

  13. El Mouatassim, M.: Modélisation en grandes transformations des solides massifs par éléments finis. Ph.D. thesis, Université de technologie de Compiègne (1989)

  14. Ponthot, J.: Traitement unifié de la mécanique des milieux continus solides en grandes transformations par la méthode des éléments finis. Ph.D. thesis, Université de Liège (1995)

  15. Cao, H.L.: Modélisation mécanique et simulation numérique de l’emboutissage. Ph.D. thesis, Institut National Polytechnique de Grenoble (1990)

  16. Alfano G., De Angelis F., Rosati L.: General solution procedures in elasto/viscoplasticity. Comput. Methods Appl. Mech. Eng. 190, 5123–5147 (2001)

    Article  MATH  Google Scholar 

  17. Cabezas E.E., Celentano D.J.: Experimental and numerical analysis of the tensile test using sheet specimens. Finite Elem. Anal. Des. 40, 555–575 (2004)

    Article  Google Scholar 

  18. García Garino C., Gabaldón F., Goicolea J.M.: Finite element simulation of the simple tension test in metals. Finite Elem. Anal. Des. 42, 1187–1197 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Careglio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Careglio, C., Canales, C., García Garino, C. et al. A numerical study of hypoelastic and hyperelastic large strain viscoplastic Perzyna type models. Acta Mech 227, 3177–3190 (2016). https://doi.org/10.1007/s00707-015-1545-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1545-6

Keywords

Navigation