Skip to main content
Log in

Modeling diffusion of sulfate through concrete using mixture theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Concrete exposed to sulfates deteriorates. Here, an attempt is made to see whether the framework of mixture theory can be used to model the changes that occur in concrete exposed to sodium sulfate. Toward this, diffusion and reaction of sulfates with concrete is modeled within the framework of mixture theory. Appropriate choices are made for the Helmholtz free energy and interaction momentum so that the process of diffusion of sulfates in concrete can be captured. As expected in mixture theory, diffusion causes deformation of the solid. The parameters in the mixture theory model are determined by comparing the steady-state concentration profile of the diffusing sodium sulfate solution and inlet velocity of the fluid with that of Fick’s solution for the same boundary conditions. An assumption is made for the mass production term to capture the reaction of sulfates with concrete. The rate constant and order of the reaction are estimated using the concentration of gypsum, calcium hydroxide and ettringite reported in the literature, for various duration of exposure of cement pastes to known concentration of sodium sulfate solution. Finally, the governing equations for the combined problem of steady-state diffusion and reaction of sulfates with concrete are presented. A numerical scheme to solve the governing equations is outlined. Long-term concentration profiles of sodium sulfate predicted by the framework agree qualitatively with the experimentally observed profile reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adenot F., Buil M.: Modelling of the corrosion of the cement paste by deionized water. Cem. Concr. Res. 22, 489–495 (1992)

    Article  Google Scholar 

  2. Al-Amoudi O.S.B.: Sulfate attack and reinforcement corrosion in plain and blended cements exposed to sulfate environments. Build. Environ. 33, 53–61 (1998)

    Article  Google Scholar 

  3. Atkin R., Craine R.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–244 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atkinson, A., Hearne, J.A.: An assessment of the long-term durability of concrete in radioactive waste repositories. AERE-R11465, Harwell, UK (1984)

  5. Atkinson, A., Hearne, J.A.: Mechanistic model for the durability of concrete barriers exposed to sulfate-bearing groundwaters. In: Materials Research Society Symposium Proceedings, vol. 176, pp. 149–156 (1990)

  6. Bary B.: Simplified coupled chemo-mechanical modeling of cement pastes behavior subjected to combined leaching and external sulfate attack. J. Numer. Anal. Methods Geomech. 32, 1791–1816 (2008)

    Article  MATH  Google Scholar 

  7. Basista M., Weglewski W.: Micromechanical modelling of sulphate corrosion in concrete: influence of ettringite forming reaction. Theor. Appl. Mech. 35, 29–52 (2008)

    Article  MATH  Google Scholar 

  8. Basista M., Weglewski W.: Chemically assisted damage of concrete: A model of expansion under external sulfate attack. Int. J. Damage Mech. 18, 155–175 (2009)

    Article  Google Scholar 

  9. Bowen R.M.: Toward a thermodynamics and mechanics of mixtures. Arch. Ration. Mech. Anal. 24, 370–403 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buonsanti M., Fosdick R., Royer-Carfagni G.: Chemomechanical Equilibrium of Bars. J. Elast. 84, 167–188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clifton, J.R., Pommersheim, J.M.: Sulfate attack of cementitious materials: Volumetric relations and expansions. In: NISTIR 5390, National Institute of Standards and Technology, p. 22 (1994)

  12. Fick A.: Ueber diffusion. Ann. Phys. 170, 59–86 (1855)

    Article  Google Scholar 

  13. Gospodinov P.N., Kazandjiev R.F., Partalin T.A., Mironova M.K.: Diffusion of sulfate ions into cement stone regarding simultaneous chemical reactions and resulting effects. Cem. Concr. Res. 29, 1591–1596 (1999)

    Article  Google Scholar 

  14. Green A.E., Naghdi P.M.: A dynamical theory of interacting continua. Int. J. Eng. Sci. 3, 231–241 (1965)

    Article  MathSciNet  Google Scholar 

  15. Green A.E., Naghdi P.M.: A theory of mixtures. Arch. Ration. Mech. Anal. 24, 243–263 (1967)

    Article  MathSciNet  Google Scholar 

  16. Green A.E., Naghdi P.M.: On basic equations for mixtures. Q. J. Mech. Appl. Math. 22, 427–438 (1969)

    Article  MATH  Google Scholar 

  17. Hime W.G., Mather B.: “Sulfate Attack”, or is it?. Cem. Concr. Res. 29, 789–791 (1999)

    Article  Google Scholar 

  18. Krajcinovic D., Basista M., Mallick K., Sumarac D.: Chemo-micromechanics of brittle solids. J. Mech. Phys. Solids 40, 965–990 (1992)

    Article  Google Scholar 

  19. Kurtis K.E., Monteiro P.J.M., Madanat S.: Empirical models to predict concrete expansion caused by sulfate attack. ACI Mater. J. 97, 156–161 (2000)

    Google Scholar 

  20. Marchand J., Odler I., Skalny J.: Sulfate Attack on Concrete. Spon Press, London (2002)

    Google Scholar 

  21. Muller I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neville A.: The confused world of sulfate attack on concrete. Cem. Concr. Res. 34, 1275–1296 (2004)

    Article  Google Scholar 

  23. NIST: Virtual cement and concrete testing laboratory (2014). http://www.nist.gov/el/building_materials/evcctl.cfm

  24. Ouyang C.: A damage model for sulfate attack of cement motars. Cem. Concr. Aggreg. 11, 92–99 (1989)

    Article  Google Scholar 

  25. Pence T.J.: On the formulation of boundary value problems with the incompressible constituents constraint in finite deformation poroelasticity. Math. Methods Appl. Sci. 35, 1756–1783 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ping X., Beaudoin J.J.: Mechanism of sulphate expansion I. Thermodynamic principle of crystallization pressure. Cem. Concr. Res. 22, 631–640 (1992)

    Article  Google Scholar 

  27. Planel D., Sercombe J., Le Bescop P., Adenot F., Torrenti J.M.: Long-term performance of cement paste during combined calcium leaching–sulfate attack: Kinetics and size effect. Cem. Concr. Res. 36, 137–143 (2006)

    Article  Google Scholar 

  28. Rajagopal K.R., Tao L.: Mechanics of Mixtures-Series on Advances in Mathematics for Applied Sciences, vol. 35. World Scientific, Singapore (1995)

    Google Scholar 

  29. Rasmuson, A., Zhu, M.: Calculations of the degradation of concrete in a final repository for nuclear water. In: Proceeding of NEA Workshop on Near-Field Assessment of Repositories for Low and Medium Level Radioactive Wastes, Baden, Switzerland (1987)

  30. Samson E., Marchand J., Snyder K., Beaudoin J.: Modeling ion and fluid transport in unsaturated cement systems in isothermal conditions. Cem. Concr. Res. 35, 141–153 (2005)

    Article  Google Scholar 

  31. Santhanam, M.: Studies on sulfate attack: mechanisms, test methods and modeling. Ph.D. thesis, Purdue University (2001)

  32. Sarkar S., Mahadevan S., Meeussen J., van der Sloot H., Kosson D.: Numerical simulation of cementitious materials degradation under external sulfate attack. Cem. Concr. Compos. 32, 241–252 (2010)

    Article  Google Scholar 

  33. Shazali M.A., Baluch M.H., Al-gadhib A.H.: Predicting residual strength in unsaturated concrete exposed to sulfate attack. ASCE J. Mater. Civil Eng. 18, 343–354 (2006)

    Article  Google Scholar 

  34. Shuman, R., Rogers, V.C., Shaw, R.A.: The barrier code for predicting long-term concrete performance. In: Waste processing, transportation, storage and disposal, technical programs and public education, Proceedings of the Symposium on Waste Management at Tucson, vol. 89, Arizona, February 26–March 2, 1989. University of Arizona, Tucson (1989)

  35. Skalny, J.P., Marchand, J. (eds.): Material science of concrete-special volume: Sulfate Attack Mechanisms, 1999 edn. American Ceramic Society, Westerville OH (1999)

  36. Sun C., Chen J., Zhu J., Zhang M., Ye J.: A new diffusion model of sulfate ions in concrete. Constr. Build. Mater. 39, 39–45 (2013)

    Article  Google Scholar 

  37. Tian B., Cohen M.D.: Expansion of alite paste caused by gypsum formation during sulfate attack. J. Mater. Civil Eng. 12, 24–25 (2000)

    Article  Google Scholar 

  38. Tixier R., Mobasher B.: Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation. J. Mater. Civil Eng. ASCE 15, 305–313 (2003)

    Article  Google Scholar 

  39. Tixier R., Mobasher B.: Modeling of damage in cement-based materials subjected to external sulfate attack. II: Comparison with experiments. J. Mater. Civil Eng. ASCE 15, 314–322 (2003)

    Article  Google Scholar 

  40. Truesdell C.: Mechanical basis of diffusion. J. Chem. Phys. 37, 2336 (1962)

    Article  Google Scholar 

  41. Truesdell, C., Noll, W.: The Nonlinear Field Theories of Mehanics. In: Flügge W. (ed.) Handbuch der Physik, 3rd edn, vol. III. Springer, Berlin (1965)

  42. Truesdell, C., Toupin, R.: The classical field theories. The Nonlinear Field Theories. In: Flügge W. (ed.) Handbuch der Physik, vol. III. Springer, Berlin (1965)

  43. Wang J.G.: Sulfate attack on hardened cement paste. Cem. Concr. Res. 24, 735–742 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Saravanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouder, C., Saravanan, U. Modeling diffusion of sulfate through concrete using mixture theory. Acta Mech 227, 3123–3146 (2016). https://doi.org/10.1007/s00707-015-1539-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1539-4

Mathematics Subject Classification

Navigation