Skip to main content
Log in

Analytical solution for the elastic bending of beams lying on a variable Winkler support

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The interaction between structures and supporting media is crucial for several engineering applications. Among existing models, the elastic one originally attributed to Emil Winkler is rather well-known to both researchers and engineers, with main reference to a constant foundation modulus. The present paper reviews first the state of the art on this model and then considers, analytically, the little-explored case of a space-dependent stiffness coefficient. The analytical solution of the ordinary differential equation describing the static deflection of a simply-supported Euler–Bernoulli elastic beam lying on a variable Winkler elastic foundation is sought. Specifically, the case of a nonlinear, minus four power variation of the stiffness coefficient is considered, allowing for closed-form representations. These are derived and examined in view of interpreting their parametric variations due to changes in the mechanical properties of the beam-foundation system. In the end, a consistent validation comparison between analytical solution and alternative reimplemented numerical treatments is produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aydogan M.: Stiffness-matrix formulation of beams with shear effect on elastic foundation. J. Struct. Eng. ASCE 121(9), 1265–1270 (1995)

    Article  Google Scholar 

  2. Barden L.: Distribution of contact pressure under foundations. Geotechnique 12(3), 181–198 (1962)

    Article  Google Scholar 

  3. Beaufait F.W.: Numerical analysis of beams on elastic foundation. J. Mech. Div. Proc. ASCE 103(EM1), 205–209 (1977)

    Google Scholar 

  4. Biot M.A.: Bending of an infinite beam on an elastic foundation. J. Appl. Mech. Trans. ASME 59(203), 1–7 (1937)

    Google Scholar 

  5. Borák P., Marcián L.: Beams on elastic foundation using modified Betti’s theorem. Int. J. Mech. Sci. 88, 17–24 (2014)

    Article  Google Scholar 

  6. Bowles J.E.: Analytical and Computer Methods in Foundation Engineering. McGraw-Hill, New York (1974)

    MATH  Google Scholar 

  7. Castro Jorge P., Simões F.M.F., Pinto da Costa A.: Dynamics of beams on non-uniform nonlinear foundations to moving loads. Comput. Struct. 148, 26–34 (2015)

    Article  Google Scholar 

  8. Castro Jorge P., Pinto da Costa A., Simões F.M.F.: Finite element dynamic analysis of finite beams on a bilinear foundation under a moving load. J. Sound Vib. 346, 328–344 (2015)

    Article  Google Scholar 

  9. Chen C.N.: Solution of beam on elastic foundation by DQEM. J. Eng. Mech. ASCE 124(12), 1381–1384 (1998)

    Article  Google Scholar 

  10. Clastornik J., Eisenberger M., Yankelevsky D.Z., Adin M.A.: Beams on variable Winkler foundation. J. Appl. Mech. Tran. ASME 53(4), 925–928 (1986)

    Article  MATH  Google Scholar 

  11. Coddington E.A., Levinson N.: Theory of Ordinary Differential Equations. McGraw-Hill, New Delhi (1955)

    MATH  Google Scholar 

  12. Dodge A.: Influence functions for beams on elastic foundations. J. Struct. Div. 90(ST4), 63–102 (1964)

    Google Scholar 

  13. Eisenberger M., Yankelevsky D.Z.: Exact stiffness matrix for beams on elastic foundation. Comput. Struct. 21(6), 1355–1359 (1985)

    Article  Google Scholar 

  14. Filonenko-Borodich M.M.: Some approximate theories of the elastic foundation (in Russian). Uchenyie Zapiski Moskovskogo Gosudarstvennogo Universiteta Mekhanica 46, 3–18 (1940)

    Google Scholar 

  15. Franklin J.N., Scott R.F.: Beam equation with variable foundation coefficient. J. Eng. Mech. Div. Proc. ASCE 105(5), 811–827 (1979)

    Google Scholar 

  16. Fraser D.C.: Beams on elastic foundations. A computer-oriented solution for beams with free ends. Civ. Eng. Trans. 11(1), 25–30 (1969)

    Google Scholar 

  17. Frydrýšek, K.: Beams on elastic foundation solved via probabilistic approach (SBRA Method). In: Bérenguer, C., Grall, A., Soares, C.G. (eds.) Advances in Safety, Reliability and Risk Management, pp. 1849–1854. Taylor and Francis, London (2012)

  18. Guo Y., Weitsman Y.J.: Solution method for beams on nonuniform elastic foundations. J. Eng. Mech. Proc. ASCE 128(5), 592–594 (2002)

    Article  Google Scholar 

  19. Gazis D.C.: Analysis of finite beams on elastic foundations. J. Struct. Div. Proc. ASCE 84(ST4), 1–18 (1958)

    MathSciNet  Google Scholar 

  20. Hayashi K.: Theorie des Trägers auf elastischer Unterlage und ihre Anwendung auf den Tiefbau nebst einer Tafel der Kreis- und Hyperbelfunktionen. Springer, Berlin (1921)

    Book  Google Scholar 

  21. Hendry A.W.: New method for the analysis of beams on elastic foundations. Civ. Eng. Public Works Rev. 53(621), 297–299 (1958)

    Google Scholar 

  22. Hertz H.: On the equilibrium of floating elastic plates. Wiedemann’s Ann. 22, 449–455 (1884)

    Article  Google Scholar 

  23. Hetényi M.: Beams on Elastic Foundation. The University of Michigan Press, Ann Arbor (1946)

    MATH  Google Scholar 

  24. Hetényi M.: A general solution for the bending of beams on an elastic foundation of arbitrary continuity. J. Appl. Phys. 21(1), 55–58 (1950)

    Article  MATH  Google Scholar 

  25. Hetényi M.: Beams and plates on elastic foundations and related problems. Appl. Mech. Rev. 19(2), 95–102 (1966)

    Google Scholar 

  26. Horibe T.: Boundary integral equation method analysis for beam-columns on elastic foundation. Trans. Jpn. Soc. Mech. Eng. Part A 62(601), 2067–2071 (1996)

    Article  Google Scholar 

  27. Hosur V., Bhavikatti S.S.: Influence lines for bending moments in beams on elastic foundations. Comput. Struct. 58(6), 1225–1231 (1996)

    Article  MATH  Google Scholar 

  28. Iwiński, T.: Theory of Beams—The Application of the Laplace Transformation Method to Engineering Problems. Pergamon Press, Oxford (1967); (edited and translated by E.P. Bernat)

  29. Iyengar K.T.S.R., Anantharamu S.: Finite beam-columns on elastic foundations. J. Eng. Mech. Div. Proc. ASCE 89(EM6), 139–160 (1963)

    Google Scholar 

  30. Iyengar K.T.S.R., Anantharamu S.: Influence lines for beams on elastic foundations. J. Struct. Div. Proc. ASCE 91(ST3), 45–56 (1965)

    Google Scholar 

  31. Jang T.S.: A new semi-analytical approach to large deflections of Bernoulli–Euler–v.Kárman beams on a linear elastic foundation: nonlinear analysis of infinite beams. Int. J. Mech. Sci. 66, 22–32 (2013)

    Article  Google Scholar 

  32. Jang T.S.: A general method for analyzing moderately large deflections of a non-uniform beam: an infinite Bernoulli–Euler–von Kárman beam on a nonlinear elastic foundation. Acta Mech. 225(7), 1967–1984 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jones G.: Analysis of Beams on Elastic Foundations Using Finite Difference Theory. Thomas Telford Publishing, New York (1997)

    Book  Google Scholar 

  34. Kerr A.D.: Elastic and viscoelastic foundation models. J. Appl. Mech. Trans. ASME 31(3), 491–498 (1964)

    Article  MATH  Google Scholar 

  35. Kerr A.D.: A study of a new foundation model. Acta Mech. 1(2), 135–147 (1965)

    Article  MathSciNet  Google Scholar 

  36. Knothe, K., Tausendfreund, D.: Emil Oskar Winkler <1835–1888>. Begründer der Statik der Baukonstruktionen an der TH Berlin. Leben und Werk. In: K. Schwarz for the president of Berlin TU, eds., 1799–1999. Von der Bauakademie zur Technischen Universität Berlin. Geschichte und Zukunft, Ernst & Sohn, Berlin (2000)

  37. Knothe K.: Fiedlerbriefe und Bibliographie Emil Winklers. Institut für Geschichte der Naturwissenschaften, München (2004)

    Google Scholar 

  38. Kurrer K.E., Ramm E.: The History of the Theory of Structures: From Arch Analysis to Computational Mechanics. Ernst & Sohn Verlag für Architektur und technische Wissenschaften, Berlin (2008)

    Book  Google Scholar 

  39. Lentini M.: Numerical solution of the beam equation with nonuniform foundation coefficient. J. Appl. Mech. Trans. ASME 46(4), 901–904 (1979)

    Article  MATH  Google Scholar 

  40. Lee S.L., Wang T.M., Kao J.S.: Continuous beam-columns on elastic foundation. J. Eng. Mech. Div. Proc. ASCE 87(EM2), 55–70 (1961)

    Google Scholar 

  41. Levinton, Z.: Elastic foundations analyzed by the method of redundant reactions. Trans. ASCE 114(1), 40–52 (1949); (also in Journal of the Structural Division, Proceedings of the ASCE, 73(12), 1529–1541)

  42. Malter H.: Numerical solutions for beams on elastic foundations. J. Struct. Div. Proc. ASCE 84(1562), 757–770 (1958)

    Google Scholar 

  43. Miyahara F., Ergatoudis J.G.: Matrix analysis of structure foundation interaction. J. Struct. Div. Proc. ASCE 102(ST1), 251–265 (1976)

    Google Scholar 

  44. Miranda C., Nair K.: Finite beams on elastic foundation. J. Struct. Div. Proc. ASCE 92(ST2), 131–142 (1966)

    Google Scholar 

  45. Murphy G.M.: Ordinary Differential Equations and Their Solutions. Van Nostrand, Princeton (1960)

    MATH  Google Scholar 

  46. Pasternak P.L.: On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants (in Russian). Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow (1954)

    Google Scholar 

  47. Penzien J.: Discontinuity stresses in beams on elastic foundations. J. Struct. Div. Proc. ASCE 86(ST4), 1083–1095 (1960)

    Google Scholar 

  48. Pipes L.A.: Applied Mathematics for Engineers and Physicists. Mc-Graw Hill, New York (1946)

    MATH  Google Scholar 

  49. Popov E.P.: Successive approximations for beams on an elastic foundations. Trans. ASCE 116(1), 1083–1095 (1951)

    Google Scholar 

  50. Ray K.C.: Influence lines for pressure distribution under a finite beam on elastic foundation. J. Am. Concret. Inst. 30(6), 729–740 (1958)

    Google Scholar 

  51. Reissner E.: A note on deflection of plates on a viscoelastic foundation. J. Appl. Mech. Trans. ASME 25(1), 144–145 (1958)

    MathSciNet  MATH  Google Scholar 

  52. Schwedler, J.W.: Discussion on iron permanent way. In: Proceedings of the Institution of Civil Engineers, vol. 67, pp. 95–118. London, UK (1882)

  53. Selvadurai A.P.S.: Elastic Analysis of Soil-Foundation Interaction. Elsevier, Amsterdam (1979)

    Google Scholar 

  54. Szuladzinski G.: Discrete models of beams on an elastic foundation. J. Eng. Mech. Div. Proc. ASCE 101(EM6), 839–853 (1975)

    Google Scholar 

  55. Terzaghi K.: Evaluation of coefficients of subgrade reaction. Geotechnique 5(4), 297–326 (1955)

    Article  Google Scholar 

  56. Timoshenko, S.P.: Method of analysis of statical and dynamical stresses in rail. In: Proceedings of the 2nd International Congress for Applied Mechanics, vol. 54, pp. 1–12. Zurich, Switzerland (1927)

  57. Timoshenko S.P.: History of Strength of Materials. McGraw-Hill, New York (1953)

    Google Scholar 

  58. Ting B.Y.: Finite beams on elastic foundation with restraints. J. Struct. Div. Proc. ASCE 108(ST3), 611–621 (1982)

    Google Scholar 

  59. Tsiatas B.Y.: Nonlinear analysis of non-uniform beams on nonlinear elastic foundation. Acta Mech. 209(1), 141–152 (2010)

    Article  MATH  Google Scholar 

  60. Usmani R.A.: A uniqueness theorem for a boundary value problem. Proc. Am. Math. Soc. 77(3), 329–335 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  61. Vlasov, V.Z., Leontiev, U.N.: Beams, Plates, and Shells on Elastic Foundations (translated from Russian). Israel Program for Scientific Translations, Jerusalem (1966)

  62. Winkler, E.: Die Lehre von der Elastizität und Festigkeit, mit Besonderer Rücksicht auf ihre Anwendung in der Technik, für Polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architekten, etc., Verlag H. Dominicus, Prague (1867)

  63. Wolfram Research, Inc.: Mathematica, Version 9.0, User Guide. Champaign, IL (2012)

  64. Yankelevsky D.Z., Eisenberger M.: Analysis of beam column on elastic foundation. Comput. Struct. 23(3), 351–356 (1986)

    Article  MATH  Google Scholar 

  65. Yankelevsky D.Z., Eisenberger M., Adin M.A.: Analysis of beams on nonlinear Winkler foundation. Comput. Struct. 31(2), 287–292 (1989)

    Article  Google Scholar 

  66. Zimmermann H.: Die Berechnung des Eisenbahnoberbaues. Wiley Ernst and Sohn, Berlin (1888)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egidio Rizzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Froio, D., Rizzi, E. Analytical solution for the elastic bending of beams lying on a variable Winkler support. Acta Mech 227, 1157–1179 (2016). https://doi.org/10.1007/s00707-015-1508-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1508-y

Keywords

Navigation