Skip to main content

Advertisement

Log in

Review and perspectives: shape memory alloy composite systems

  • Review and Perspective in Mechanics
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Following their discovery in the early 1960s, there has been a continuous quest for ways to take advantage of the extraordinary properties of shape memory alloys (SMAs). These intermetallic alloys can be extremely compliant while retaining the strength of metals and can convert thermal energy to mechanical work. The unique properties of SMAs result from a reversible diffussionless solid-to-solid phase transformation from austenite to martensite. The integration of SMAs into composite structures has resulted in many benefits, which include actuation, vibration control, damping, sensing, and self-healing. However, despite substantial research in this area, a comparable adoption of SMA composites by industry has not yet been realized. This discrepancy between academic research and commercial interest is largely associated with the material complexity that includes strong thermomechanical coupling, large inelastic deformations, and variable thermoelastic properties. Nonetheless, as SMAs are becoming increasingly accepted in engineering applications, a similar trend for SMA composites is expected in aerospace, automotive, and energy conversion and storage-related applications. In an effort to aid in this endeavor, a comprehensive overview of advances with regard to SMA composites and devices utilizing them is pursued in this paper. Emphasis is placed on identifying the characteristic responses and properties of these material systems as well as on comparing the various modeling methodologies for describing their response. Furthermore, the paper concludes with a discussion of future research efforts that may have the greatest impact on promoting the development of SMA composites and their implementation in multifunctional structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboudi J.: The generalized method of cells and high-fidelity generalized method of cells micromechanical models—a review. Mech. Adv. Mater. Struct. 11, 329–366 (2004)

    Article  Google Scholar 

  2. Alebrahim R., Haris S., Mohamed N., Abdullah S.: Vibration analysis of self-healing hybrid composite beam under moving mass. Compos. Struct. 119, 463–476 (2015)

    Article  Google Scholar 

  3. Alecci V., Bati S.B., Ranocchiai G.: Numerical homogenization techniques for the evaluation of mechanical behavior of a composite with SMA inclusions. J. Mech. Mater. Struct. 4, 1675–1688 (2009)

    Article  Google Scholar 

  4. Anderson A., Pedersen D., Sivertsen A., Sangesland S.: Detailed Study of Shape Memory Alloys in Oil Well Applications. SINTEF Petroleum Research, Trondheim, Norway (1999)

    Google Scholar 

  5. Angioni, S.L., Meo, M., Foreman, A.: Impact damage resistance and damage suppression properties of shape memory alloys in hybrid composites—a review. Smart Mater. Struct. 20 (2011). Art. no. 013001

  6. Antico, F.C., Zavattieri, P.D., Hector, Jr., L.G., Mance, A., Rodgers, W.R., Okonski, D.A.: Adhesion of nickel-titanium shape memory alloy wires to thermoplastic materials: theory and experiments. Smart Mater. Struct. 21 (2012). Art. no 035022

  7. de Araújo, C.J., Rodrigues, L.F.A., Coutinho Neto, J.F., Reis, R.P.B.: Fabrication and static characterization of carbon-fiber-reinforced polymers with embedded NiTi shape memory wire actuators. Smart Mater. Struct. 17 (2008). Art. no. 065004

  8. Armstrong W.D., Kino H.: Martensitic transformations in a NiTi fiber reinforced 6061 aluminum matrix composite. J. Intell. Mater. Syst. Struct. 6, 809–816 (1995)

    Article  Google Scholar 

  9. Arnaboldi S., Bassani P., Biffi C.A., Tuissi A., Carnevale M., Lecis N., LoConte A., Previtali B.: Simulated and experimental damping properties of a SMA/Fiber glass laminated composite. J. Mater. Eng. Perform. 20, 551–558 (2011)

    Article  Google Scholar 

  10. Arnaboldi S., Bassani P., Passaretti F., Redaelli A., Tuissi A.: Fabrication and static characterization of carbon-fiber-reinforced polymers with embedded NiTi shape memory wire actuators. J. Mater. Eng. Perform. 20, 544–550 (2011)

    Article  Google Scholar 

  11. Asadi H., Akbarzadeh A., Wang Q.: Nonlinear thermo-inertial instability of functionally graded shape memory alloy sandwich plates. Compos. Struct. 120, 496–508 (2015)

    Article  Google Scholar 

  12. Asadi, H., Bodaghi, M., Shakeri, M., Aghdam, M.M.: Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation. Acta Mech. (2014). doi:10.1007/s00707-014-1191-4

  13. Asadi H., Kiani Y., Shakeri M., Eslami M.R.: Exact solution for nonlinear thermal stability of hybrid laminated composite timoshenko beams reinforced with SMA fibers. Compos. Struct. 108, 811–822 (2014)

    Article  Google Scholar 

  14. Ashby M.F.: A first report on deformation-mechanism maps. Acta Metall. 20, 887–897 (1972)

    Article  Google Scholar 

  15. Ashby M.F.: Overview no. 80: On the engineering properties of materials. Acta Metall. 37, 1273–1293 (1989)

    Article  Google Scholar 

  16. Ashby M.F., Bréchet Y.J.M.: Designing hybrid materials. Acta Mater. 53, 5801–5821 (2003)

    Article  Google Scholar 

  17. Ashrafi M.J., Arghavani J., Naghdabadi R., Sohrabpour S.: A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys. J. Mech. Behav. Biomed. Mater. 42, 292–310 (2015)

    Article  Google Scholar 

  18. Auricchio F., Petrini L.: A three-dimensional model describing stress–temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications. Int. J. Numer. Methods Eng. 61, 716–737 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Auricchio F., Taylor R.L., Lubliner J.: Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146, 281–312 (1997)

    Article  MATH  Google Scholar 

  20. Aurrekoetxea J., Zurbitu J., Ortizde Mendibil I., Agirregomezkorta A., Sánchez-Soto M., Sarrionandia M.: Effect of super elastic shape memory alloy wires on the impact behavior of carbon fiber reinforced in situ polymerized poly(butylene terephthalate) composites. Mater. Lett. 65, 863–865 (2011)

    Article  Google Scholar 

  21. Aydogmus T.: Processing of interpenetrating Mg-TiNi composites by spark plasma sintering. Mater. Sci. Eng. A 624, 261–270 (2015)

    Article  Google Scholar 

  22. Aydoğmus T., Bor d.: Enhanced sintering of TiNi shape memory foams under Mg vapor atmosphere. Metall. Mater. Trans. A 43A, 5173–5181 (2012)

    Article  Google Scholar 

  23. Aydoğmus T., Bor d.: Superplasticity and compression behavior of porous TiNi alloys produced using Mg spacers. J. Mech. Behav. Biomed. Mater. 15, 59–69 (2012)

    Article  Google Scholar 

  24. Aydoğmus T., Bor E.T., Bor d.: Phase transformation behavior of porous TiNi alloys produced by powder metallurgy using magnesium as a space holder. Metall. Mater. Trans. A 42A, 2547–2555 (2011)

    Article  Google Scholar 

  25. Balapgol B.S., Bajoria K.M., Kulkarni S.A.: A two-dimensional finite element analysis of a shape memory alloy laminated composite plate. Smart Mater. Struct. 15, 1009–1020 (2006)

    Article  Google Scholar 

  26. Bansiddhi A., Dunand D.C.: Shape memory NiTi foams produced by solid-state replication with NaF. Intermetallics 15, 1612–1622 (2007)

    Article  Google Scholar 

  27. Bansiddhi A., Dunand D.C.: Shape-memory NiTi foams produced by replication of NaCl space-holders. Acta Biomater. 4, 1996–2007 (2008)

    Article  Google Scholar 

  28. Bansiddhi A., Dunand D.C.: Shape-memory NiTi-Nb foams. J. Mater. Res. 24, 2007–2117 (2009)

    Article  Google Scholar 

  29. Bansiddhi A., Dunand D.C.: Niobium wires as space holder and sintering aid for porous NiTi. Adv. Eng. Mater. 13, 301–305 (2011). doi:10.1002/adem.201000241

    Article  Google Scholar 

  30. Bansiddhi A., Dunand D.C.: Processing of NiTi foams by transient liquid phase sintering. J. Mater. Eng. Perform. 20, 511–516 (2011)

    Article  Google Scholar 

  31. Bansiddhi A., Sargeant T.D., Stupp S.I., Dunand D.C.: Porous NiTi for bone implants: a review. Acta Biomater. 4, 773–782 (2008)

    Article  Google Scholar 

  32. Barrado M., Lopez G.A., No M.L., San Juan J.: Composites with ultra high damping capacity based on powder metallurgy shape memory alloys. Mater. Sci. Eng. A 521–522, 363–367 (2009)

    Article  Google Scholar 

  33. Barrett R., Gross R.S.: Super-active shape-memory alloy composites. Smart Mater. Struct. 5, 255–260 (1996)

    Article  Google Scholar 

  34. Barrie F., Futch D.B., Hsu D.H.D., Manuel M.V.: Effect of phase on debunk strength in shape memory alloy reinforced composites. Mater. Des. 57, 98–102 (2014)

    Article  Google Scholar 

  35. Barsoum M.W.: The M N+1 AX N phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000)

    Article  Google Scholar 

  36. Barsoum M.W., Radovic M.: Elastic and mechanical properties of MAX phases. Annu. Rev. Mater. Res. 41, 195–227 (2011)

    Article  Google Scholar 

  37. Basu S., Obando N., Gowdy A., Karaman I., Radovic M.: Long-term oxidation of Ti2AlC in air and water vapor at 1000–1300°C temperature range. J. Electrochem. Soc. 159, C90–C96 (2012)

    Article  Google Scholar 

  38. Basu S., Ozaydin M.F., Kothalkar A., Karaman I., Radovic M.: Phase and morphology evolution in high-temperature Ti3SiC2-NiTi diffusion-bonded joints. Scr. Mater. 65, 237–240 (2011)

    Article  Google Scholar 

  39. Baxevanis T., Cox A., Lagodas D.C.: Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys. Acta Mech. 225, 1167–1185 (2014)

    Article  MATH  Google Scholar 

  40. Bay B., Smith T., Fyhrie D., Saad M.: Digital volume correlation: three-dimensional strain mapping using x-ray tomography. Exp. Mech. 39, 217–226 (1999)

    Article  Google Scholar 

  41. Baz A., Poh S., Ro J., Gilheany J.: Control of the natural frequencies of NiTiNOL-reinforced composite beams. J. Sound Vib. 185, 171–185 (1995)

    Article  MATH  Google Scholar 

  42. Baz A., Ro J.: Thermo-dynamic characteristics of NITINOL reinforced composite beams. Compos. Eng. 2, 527–542 (1992)

    Article  Google Scholar 

  43. Baz A., Ro J.: Torsional stiffness of NiTiNOL-reinforced composite drive shafts. Compos. Eng. 3, 1119–1130 (1993)

    Article  Google Scholar 

  44. Baz A., Ro J.: Optimal vibration control of NiTiNOL-reinforced composites. Compos. Eng. 4, 567–576 (1994)

    Article  Google Scholar 

  45. Bellouard Y.: Shape memory alloys for microsystems: a review from a material perspective. Mater. Sci. Eng. A 481–482, 582–589 (2008)

    Article  Google Scholar 

  46. Benefan O., Brown J., Calkins F.T., Kumar P., Stebner A.P., Turner T.L., Vaidyanathan R., Webster J., Young M.L.: Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int. J. Mech. Mater. Des. 10, 1–42 (2014)

    Article  Google Scholar 

  47. Benveniste Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987)

    Article  Google Scholar 

  48. Benveniste, Y., Dvorak, G.: On a correspondence between mechanical and thermal effects in two-phase composites. In: Weng, G., Taya, M., Abé, H. Micromechanics and Inhomogeneity, pp. 65–81. Springer, New York (1990)

  49. Berman J.B., White S.R.: Theoretical modeling of residual and transformational stresses in SMA composites. Smart Mater. Struct. 5, 731–743 (1996)

    Article  Google Scholar 

  50. Bernard S., Balla V.K., Bose S., Bandyopadhyay A.: Rotating bending fatigue response of laser processed porous NiTi alloy. Mater. Sci. Eng. C 31, 815–820 (2011)

    Article  Google Scholar 

  51. Bernard S., Balla V.K., Bose S., Bandyopadhyay A.: Compression fatigue behavior of laser processed porous NiTi alloy. J. Mech. Behav. Biomed. Mater. 13, 62–68 (2012)

    Article  Google Scholar 

  52. Bertolino G., Arneodo Larochette P., Castrodeza E.M., Mapelli C., Baruj A., Troiani H.E.: Mechanical properties of martensitic Cu-Zn-Al foams in the pseudoelastic regime. Mater. Lett. 64, 1448–1450 (2010)

    Article  Google Scholar 

  53. Bertolino G., Gruttadauria A., Arneodo Larochette P., Castrodeza E.M., Baruj A., Troiani H.E.: Cyclic pseudoelastic behavior and energy dissipation in as-cast Cu-Zn-Al foams of different densities. Intermetallics 19, 577–585 (2011)

    Article  Google Scholar 

  54. Bewerse C., Brinson L.C., Dunand D.C.: NiTi with 3D-interconnected micro channels produced by liquid phase sintering and electrochemical dissolution of steel tubes. J. Mater. Process. Technol. 214, 1895–1899 (2014)

    Article  Google Scholar 

  55. Bhattacharyya A., Lagoudas D.C.: A stochastic thermodynamic model for the gradual thermal transformation of polycrystals. Smart Mater. Struct. 6, 235–250 (1997)

    Article  Google Scholar 

  56. Birman V.: Review of mechanics of shape memory alloy structures. Appl. Mech. Rev. 50, 629–645 (1997)

    Article  Google Scholar 

  57. Birman V.: Effect of elastic or shape memory alloy particles on the properties of fiber-reinforced composites. J. Mech. Mater. Struct. 4, 1209–1225 (2009)

    Article  Google Scholar 

  58. Birman, V.: Properties and response of composite material with spheroidal super elastic shape memory alloy inclusions subject to three dimensional stress state. J. Phys. D: Appl. Phys. 43 (2010). Art. no. 225402

  59. Blaiszik B.J., Kramer S.L.B., Olugebefola S.C., Moore J.S., Sottos N.R., White S.R.: Self-healing polymers and composites. Ann. Rev. Mater. Res. 40, 179–211 (2010)

    Article  Google Scholar 

  60. de Blonk B., Lagoudas D.: Actuation of elastomeric rods with embedded two-way shape memory alloy actuators. Smart Mater. Struct. 7, 771–783 (1998)

    Article  Google Scholar 

  61. Bo Z., Lagoudas D.C.: Thermomechanical modeling of polycrystalline SMAs under cyclic loading, part IV: modeling of minor hysteresis loops. Int. J. Eng. Sci. 37, 1205–1249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  62. Bodaghi M., Shakeri M., Aghdam M.: Thermo-mechanical behavior of shape adaptive composite plates with surface-bonded shape memory alloy ribbons. Compos. Struct. 119, 115–133 (2015)

    Article  Google Scholar 

  63. Bollas D., Pappas P., Parthenios J., Galiotis C.: Stress generation by shape memory alloy wires embedded in polymer composites. Acta Mater. 55, 5489–5499 (2007)

    Article  Google Scholar 

  64. Boonyongmaneerat, Y., Chmielus, M., Dunand, D.C., Müllner, P.: Increasing magneto plasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity. Phys. Rev. Lett. 99 (2007). Art. no. 247201

  65. Bor T.C., Warnet L., Akkerman R., de Boer A.: Modeling of stress development during thermal damage healing in fiber-reinforced composite materials containing embedded shape memory alloy wires. J. Compos. Mater. 44, 2547–2572 (2010)

    Article  Google Scholar 

  66. Bormann T., Schulz G., Deyhle H., Beckmann F., de Wild M., Küffer J., Münch C., Hoffman W., Müller B.: Combining micro computed tomography and three-dimensional registration to evaluate local strains in shape memory scaffolds. Acta Biomater. 10, 1024–1034 (2014)

    Article  Google Scholar 

  67. Bouvet C., Calloch S., Lexcellent C.: A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur. J. Mech. A/Solids 23, 37–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. Boyd J.G., Lagoudas D.C.: Thermomechanical response of shape memory composites. J. Intell. Mater. Syst. Struct. 5, 333–346 (1994)

    Article  Google Scholar 

  69. Boyd J.G., Lagoudas D.C.: A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material. Int. J. Plasticity 12, 843–873 (1996)

    Article  MATH  Google Scholar 

  70. Bram M., Köhl M., Buchkremer H.P., Stöver D.: Mechanical properties of highly porous NiTi alloys. J. Mater. Eng. Perform. 20, 522–528 (2011)

    Article  Google Scholar 

  71. Briggs J.P., Ponte Castaneda P.: Variational estimates for the effective response of shape memory alloy actuated fiber composites. J. Appl. Mech. 69, 470–480 (2002). doi:10.1115/1.1464873

    Article  MATH  Google Scholar 

  72. Buehler W.J., Gilfrich J.V., Wiley R.C.: Effects of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 34, 1475 (1963)

    Article  Google Scholar 

  73. Burton D., Gao X., Brinson L.: Finite element simulation of a self-healing shape memory alloy composite. Mech. Mater. 38, 525–537 (2006)

    Article  Google Scholar 

  74. Calkins F.T., Mabe J.H.: Shape memory alloy based morphing aerostructures. J. Mech. Des. 132, 111012 (2010)

    Article  Google Scholar 

  75. Casciati F., Faravelli L., Fuggini C.: Cable vibration mitigation by added SMA wires. Acta Mech. 195, 141–155 (2008)

    Article  MATH  Google Scholar 

  76. Castaneda P., Suquet P.: Nonlinear composites. Adv. Appl. Mech. 34, 171–302 (1998)

    Article  MATH  Google Scholar 

  77. Castrodeza E.M., Mapelli C., Vedani M., Arnaboldi S., Bassani P., Tuissi A.: Processing of shape memory CuZnAl open-cell foam by molten metal infiltration. J. Mater. Eng. Perform. 18, 484–489 (2009)

    Article  Google Scholar 

  78. Chaboche J., Kanouté P., Roos A.: On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int. J. Plasticity 21, 1409–1434 (2005)

    Article  MATH  Google Scholar 

  79. Chaboche J., Kruch S., Maire J.F., Pottier T.: Towards a micromechanics based inelastic and damage modeling of composites. Int. J. Plasticity 17, 411–439 (2001)

    Article  MATH  Google Scholar 

  80. Chang S.H., Lee C.Y.: Damping characteristics of TiNi shape memory alloy wires reinforced epoxy resin. J. Reinf. Plastics Compos. 30, 1931–1938 (2011)

    Article  Google Scholar 

  81. Chatterjee S., Velankar S.S.: Reversibly texturing active surfaces with spatial and temporal control. J. Intell. Mater. Syst. Struct. 26, 328–339 (2015)

    Article  Google Scholar 

  82. Chatzigeorgiou, G., Chemisky, Y., Meraghni, F.: Computational micro to macro transitions for shape memory alloy composites using periodic homogenization. Smart Mater. Struct. 24 (2015). Art. no. 035009

  83. Chaudhury Z., Rogers C.A.: Response of composite beams to an internal actuator force. J. Mech. Des. 114, 343–348 (1992)

    Article  Google Scholar 

  84. Chaudhury Z., Hailat M., Liu Y., Newaz G.: Aluminum-based composites reinforced with SiC particles and NiTi fibers: influence of fiber dimensions and aging time on mechanical properties. J. Mater. Sci. 46, 1945–1955 (2011)

    Article  Google Scholar 

  85. Chemisky Y., Chatzigeorgiou G., Kumar P., Lagoudas D.C.: A constitutive model for cyclic actuation of high-temperature shape memory alloys. Mech. Mater. 68, 120–136 (2014)

    Article  Google Scholar 

  86. Chemisky Y., Cuval A., Patoor E., Ben Zineb T.: Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation. Mech. Mater. 43, 361–376 (2011)

    Article  Google Scholar 

  87. Chemisky, Y., Duval, A., Piotrowski, B., Ben Zineb, T., Tahiri, V., Patoor, E.: Numerical tool for SMA material simulation: application to composite structure design. Smart Mater. Struct. (2009). doi:10.1088/0964-1726/18/10/104012

  88. Chen G., Cao P., Edmonds N.: Porous NiT alloys produced by press-and-sinter from Ni/Ti and Ni/TiH2 mixtures. Mater. Sci. Eng. A 582, 117–125 (2013)

    Article  Google Scholar 

  89. Chen, Q., Zhu, H.H., Ju, J.W., Guo, F., Wang, L.B., Yan, Z.G., Deng, T., Zhou, S.: A stochastic micromechanical model for multiphase composites containing spherical inhomogeneities. Acta Mech. 226, 1861–1880 (2015)

  90. Chen S.Y., Wang D.H., Han Z.D., Zhang C.L., Du Y.W., Huang Z.G.: Converse magnetoelectric effect in ferromagnetic shape memory alloy/piezoelectric laminate. Appl. Phys. Lett. 95, 022501 (2009)

    Article  Google Scholar 

  91. Chen S.Y., Ye Q.Y., Miao W., Wang D.H., Wan J.G., Liu J.M., Du Y.W., Huang Z.G., Zhou S.Q.: Direct and converse magnetoelectric effects in \({{\rm Ni}_{43} {\rm Mn}_{41} {\rm Co}_{5} {\rm Sn}_{11}/{\rm Pb(Zr, Ti)O}_{3}}\) laminate. J. Appl. Phys. 107, 09D901 (2010)

    Google Scholar 

  92. Chen S.Y., Zheng Y.X., Ye Q.Y., Xuan H.C., Cau Q.Q., Deng Y., Wang D.H., Du Y.W., Huang Z.G.: Electric field-modulated Hall resistivity and magnetization in magnetoelectric Ni-Mn-Co-Sn/PMN-PT laminate. J. Alloys Compd. 509, 8885–8887 (2011)

    Article  Google Scholar 

  93. Cheng F., Hu L., Reddy J.N., Karaman I., Hoffman E., Radovic M.: Temperature-dependent thermal properties of a shape memory alloy/MAX phase composite: experiments and modeling. Acta Mater. 68, 267–278 (2014)

    Article  Google Scholar 

  94. Cherkaoui M., Sun Q.P., Song G.Q.: Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement. Int. J Solids Struct. 37, 1577–1594 (2000)

    Article  MATH  Google Scholar 

  95. Chmielus M., Witherspoon C., Wimpory R.C., Paulke A., Hilger A., Zhang X., Dunand D.C., Müllner P.: Magnetic-field-induced recovery strain in polycrystalline Ni-Mn-Ga foam. J. Appl. Phys. 108, 123526 (2010). doi:10.1063/1.3524503

    Article  Google Scholar 

  96. Chmielus M., Zhang X.X., Witherspoon C., Dunand D.C., Müllner P.: Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams. Nat. Mater. 8, 863–866 (2009). doi:10.1038/NMAT2527

    Article  Google Scholar 

  97. Cho H.K., Rhee J.: Nonlinear finite element analysis of shape memory alloy (SMA) wire reinforced hybrid laminate composite shells. Int. J. Non-Linear Mech. 47, 672–678 (2012)

    Article  Google Scholar 

  98. Collard C., Ben Zineb T.: Simulation of the effect of elastic precipitates in SMA materials based on a micromechanical model. Compos. Part B 43, 2560–2576 (2012)

    Article  Google Scholar 

  99. Collard C., Ben Zineb T., Patoor E., Salah M.O.B.: Micromechanical analysis of precipitate effects on shape memory alloys behavior. Mater. Sci. Eng. A 481–482, 366–370 (2008)

    Article  Google Scholar 

  100. Coppola, A.M., Hu, L., Thakre, P.R., Radovic, M., Karaman, I., Sottos, N.R., White, S.R.: Active cooling of a bilayer shape memory alloy-polymer matrix composite hybrid containing micro channels fabricated by vaporization of sacrificial components. Adv. Funct. Mater. (2015, Under Review)

  101. Cortes, P., Terzak, J., Tubas, G., Phillips, D., Baur, J.W.: The morphing properties of a vascular shape memory composite. Smart Mater. Struct. 23 (2014). Art. no. 015018

  102. Coughlin J.P., Williams J.J., Chawla N.: Mechanical behavior of NiTi shape memory alloy fiber reinforced Sn matrix “smart” composites. J. Mater. Sci. 44, 1267–1272 (2009). doi:10.1007/s10853-008-3188-7

    Article  Google Scholar 

  103. Coughlin J.P., Williams J.J., Crawford G.A., Chawla N.: Interfacial reactions in model NiTi shape memory alloy fiber-reinforced Sn matrix “smart" composites. Metall. Mater. Trans. A 40A, 176–184 (2009)

    Article  Google Scholar 

  104. Cox, A., Franco, B., Baxevanis, T., Karaman, I., Lagoudas, D.C.: Predictive constitutive modeling of precipitated Ni-rich NiTi SMAs (submitted)

  105. Crews, J.H., McMahan, J.A., Smith, R.C., Hannen, J.C.: Quantification of parameter uncertainty for robust control of shape memory alloy bending actuators. Smart Mater. Struct. 22 (2013). Art. no. 115021

  106. Crews J.H., Smith R.C.: Quantification of parameter and model uncertainty for shape memory alloy bending actuators. J. Intell. Mater. Syst. Struct. 25, 229–245 (2014)

    Article  Google Scholar 

  107. Daghia F., Inman D., Ubertini F., Viola E.: Shape memory alloy hybrid composite plates for shape and stiffness control. J. Intell. Mater. Syst. Struct. 19, 609–619 (2008)

    Article  Google Scholar 

  108. Daly, M., Pequegnat, A., Zhou, Y., Khan, M.I.: Enhanced thermomechanical functionality of a laser processed hybrid NiTiNiTiCu shape memory alloy. Smart Mater. Struct. (2012). doi:10.1088/0964-1726/21/4/045018

  109. Damanpack, A.R., Aghdam, M.M., Shakeri, M.: Micromechanics of shape memory alloy fiber-reinforced composites subjected to multi-axial non-proportional loadings. J. Intell. Mater. Syst. Struct. (2014). doi:10.1177/1045389X14556165

  110. Damanpack A.R., Aghdam M.M., Shakeri M.: Micro-mechanics of composite with SMA fibers embedded in metallic/polymeric matrix under off-axial loadings. Eur. J. Mech. A/Solids 49, 467–480 (2015)

    Article  MathSciNet  Google Scholar 

  111. Davis B., Turner T.L., Seelecke S.: Measurement and prediction of the thermomechanical response of shape memory alloy hybrid composite beams. J. Intell. Mater. Syst. Struct. 19, 129–143 (2008)

    Article  Google Scholar 

  112. Dixit M., Newkirk J.W., Mishra R.S.: Properties of friction stir-processed AL 1100-NiTi composite. Scr. Mater. 56, 34–52 (2007)

    Article  Google Scholar 

  113. Doghri I., Adam L., Bilger N.: Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method. Int. J. Plasticity 26, 219–238 (2010)

    Article  MATH  Google Scholar 

  114. Doghri I., Brassart L., Adam L., Gérard J.S.: A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. Int. J. Plasticity 27, 352–371 (2011)

    Article  MATH  Google Scholar 

  115. Dong J., Cai C.S., Okeil A.M.: Overview of potential and existing applications of shape memory alloys in bridges. J. Bridge Eng. 16, 305–315 (2011)

    Article  Google Scholar 

  116. Drago A., Pindera M.J.: Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Compos. Sci. Technol. 67, 1243–1263 (2007)

    Article  Google Scholar 

  117. Drugan W.J., Willis J.R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44, 497–524 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  118. Duerig T., Pelton A., Stöckel D.: An overview of NiTiNOL medical applications. Mater. Sci. Eng. A 273–275, 149–160 (1999)

    Article  Google Scholar 

  119. Dunand D.C., Mari D., Bourke M.A.M., Roberts J.A.: NiTi and NiTi-TiC composites: part IV. Neutron diffraction study of twinning and shape-memory recovery. Metall. Mater. Trans. A 27A, 2820–2836 (1996)

    Article  Google Scholar 

  120. Dunand D.C., Müllner P.: Size effects on the magnetic actuation in Ni-Mn-Ga shape memory alloys. Adv. Mater. 23, 216–232 (2011)

    Article  Google Scholar 

  121. Dvorak G.J.: Thermomechanics of heterogeneous media. J. Therm. Stress. 20, 799–817 (1997)

    Article  Google Scholar 

  122. Eggeler G., Hornbogen E., Yawny A., Heckmann A., Wagner M.: Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378, 24–33 (2004)

    Article  Google Scholar 

  123. Elahinia M.H., Hashemi M., Tabesh M., Bhaduri S.B.: Manufacturing and processing of NiTi implants: a review. Prog. Mater. Sci. 57, 911–946 (2012)

    Article  Google Scholar 

  124. Entchev P.B., Lagoudas D.C.: Modeling porous shape memory alloys using micromechanical averaging techniques. Mech. Mater. 34, 1–24 (2002)

    Article  Google Scholar 

  125. Entchev P.B., Lagoudas D.C.: Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys: part II: porous SMA response. Mech. Mater. 36, 893–913 (2004)

    Article  Google Scholar 

  126. Epps J., Chandra R.: Shape memory alloy actuation for active tuning of composite beams. Smart Mater. Struct. 6, 251–264 (1997)

    Article  Google Scholar 

  127. Esen Z.: The effect of processing routes on the structure and properties of magnesium-TiNi composites. Mater. Sci. Eng. A 558, 632–640 (2012)

    Article  Google Scholar 

  128. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  129. Evirgen A., Karaman I., Noebe R.D., Santamarta R., Pons J.: Effect of precipitation on the microstructure and the shape memory response of the Ni50.3Ti29.7Hf20 high temperature shape memory alloy. Scr. Mater. 69, 354–357 (2013)

    Article  Google Scholar 

  130. Evirgen A., Karaman I., Santamarta R., Pons J., Noebe R.D.: Microstructural characterization and superelastic response of a Ni50.3Ti29.7Zr20 shape memory alloy. Scr. Mater. 81, 12–15 (2014)

    Article  Google Scholar 

  131. Evirgen A., Karaman I., Santamarta R., Pons J., Noebe R.D.: Microstructural characterization and shape memory characteristics of the Ni50.3Ti34.7Hf15 shape memory alloy. Acta Mater. 83, 48–60 (2015)

    Article  Google Scholar 

  132. Faiella G., Antonucci V., Daghia F., Fascia S., Giordano M.: Fabrication and thermo-mechanical characterization of a shape memory alloy hybrid composite. J. Intell. Mater. Syst. Struct. 22, 245–252 (2011)

    Article  Google Scholar 

  133. Farvizi M., Ebadzadeh T., Vaezi M.R., Yoon E.Y., Kim Y.J., Kim H.S., Simchi A.: Microstructural characterization of HIP consolidated NiTi-nano Al2O3 composites. J. Alloys Compd. 606, 21–26 (2014)

    Article  Google Scholar 

  134. Feng X., Sui J., Cai W.: Processing of multi-walled carbon nanotube-reinforced TiNi composites by hot pressed sintering. J. Compos. Mater. 45, 1553–1557 (2011). doi:10.1177/0021998310383734

    Article  Google Scholar 

  135. Feng X., Zhao L., Mi X., Li Y., Xie H., Yin X., Gao B.: Improved shape memory composites combined with TiNi wire and shape memory epoxy. Mater. Des. 50, 724–727 (2013)

    Article  Google Scholar 

  136. Feuchtwanger J., Richard M.L., Tang Y.J., Berkowitz A.E., O’Handley R.C., Allen S.M.: Large energy absorption in Ni-Mn-Ga/polymer composites. J. Appl. Phys. 97, 10M319 (2005)

    Article  Google Scholar 

  137. Feuchtwanger, J., Richard, M.L., Tang, Y.J., Berkowitz, A.E., O’Handley, R.C., Allen, S.M.: Rearrangement of twin variants in ferromagnetic shape memory alloy-polyurethane composites studied by stroboscopic neutron diffraction. J. Phys. Condens. Matter 20 (2008). Art. no. 104247

  138. Firstov G.S., Van Humbeeck J., Koval Y.N.: High temperature shape memory alloys problems and prospects. J. Intell. Mater. Syst. Struct. 17, 1041 (2006)

    Article  Google Scholar 

  139. Fish J., Shek K., Pandheeradi M., Shephard M.: Computational plasticity for composite structures based on mathematical homogenization: theory and practice. Comput. Methods Appl. Mech. Eng. 148, 53–73 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  140. Freed, Y., Aboudi, J.: Micromechanical investigation of plasticity-damage coupling of concrete reinforced by shape memory alloy fibers. Smart Mater. Struct. 17 (2008). Art. no. 015046

  141. Freed Y., Aboudi J.: Micromechanical prediction of the two-way shape memory effect in shape memory alloy composites. Int. J. Solids Struct. 46, 1634–1647 (2009)

    Article  MATH  Google Scholar 

  142. Freed Y., Aboudi J.: Thermomechanically coupled micromechanical analysis of shape memory alloy composites undergoing transformation induced plasticity. J. Intell. Mater. Syst. Struct. 20, 23–38 (2009)

    Article  Google Scholar 

  143. Freed Y., Aboudi J., Gilat R.: Thermomechanically micromechanical modeling of prestressed concrete reinforced with shape memory alloy fibers. Smart Mater. Struct. 16, 717–727 (2007)

    Article  Google Scholar 

  144. Freed Y., Aboudi J., Gilat R.: Investigation of shape memory alloy honeycombs by means of a micromechanical analysis. Model. Simul. Mater. Sci. Eng. 56, 3003–3020 (2008)

    MATH  Google Scholar 

  145. Fukami-Ushiro K.L., Dunand D.C.: NiTi-NiTi-TiC composites: part III. Shape-memory recovery. Metall. Mater. Trans. A 27A, 193–203 (1996)

    Article  Google Scholar 

  146. Fukami-Ushiro K.L., Mari D., Dunand D.C.: NiTi-NiTi-TiC composites: part II. Compressive mechanical properties. Metall. Mater. Trans. A 27A, 183–191 (1996)

    Article  Google Scholar 

  147. Furuya Y.: Design and material evaluation of shape memory composites. J. Intell. Mater. Syst. Struct. 7, 321–330 (1996)

    Article  Google Scholar 

  148. Furuya Y., Sasaki A., Taya M.: Enhanced mechanical properties of TiNi shape memory fiber/Al matrix composite. Mater. Trans. JIM 34, 224–227 (1996)

    Article  Google Scholar 

  149. Gao X., Burton D., Turner T.L., Brinson L.C.: Finite element analysis of adaptive-stiffening and shape-control SMA hybrid composites. J. Eng. Mater. Technol. 128, 285–293 (2006)

    Article  Google Scholar 

  150. Gavazzi A.C., Lagoudas D.C.: On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Comput. Mech. 7, 13–19 (1990)

    Article  Google Scholar 

  151. Ghosh P., Rao A., Srinivasa A.R.: Design of multi-state and smart-bias components using shape memory alloy and shape memory polymer composites. Mater. Des. 44, 164–171 (2013)

    Article  Google Scholar 

  152. Gillet Y., Patoor E., Berveiller M.: Calculation of pseudoelastic elements using a non-symmetrical thermomechanical transformation criterion and associated rule. J. Intell. Mater. Syst. Struct. 9, 366–378 (1998)

    Article  Google Scholar 

  153. Glock S., Spārninš E., Leterrier Y., Michaud V.: Effect of annealing and silylation on the strength of melt-spun Ni-Mn-Ga fibres and their adhesion to epoxy. Int. J. Adhes. Adhes. 55, 89–94 (2014)

    Article  Google Scholar 

  154. Glock S., Zhang X.X., Kucza N.J., Müllner P., Michaud V.: Structural, physical and damping properties of melt-spun Ni-Mn-Ga wire-epoxy composites. Compos. Part A 63, 68–75 (2014)

    Article  Google Scholar 

  155. Gong S., Li Z., Xiao Z., Zheng F.: Microstructure and property of the composite laminate cladded by explosive welding of CuAlMn shape memory alloy and QBe2. Mater. Des. 30, 1404–1408 (2009)

    Article  Google Scholar 

  156. González C., Segurado J., LLorca J.: Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfilms and implications for homogenization models. J. Mech. Phys. Solids 52, 1573–1593 (2004)

    Article  MATH  Google Scholar 

  157. Granta: CES 2015 edupack. Website (2015). http://www.grantadesign.com/education/edupack/index.htm

  158. Groeber M., Ghosh S., Uchic M.D., Dimiduk D.M.: A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: statistical characterization. Acta Mater. 56, 1257–1273 (2008)

    Article  Google Scholar 

  159. Groeber M., Ghosh S., Uchic M.D., Dimiduk D.M.: A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: synthetic structure generation. Acta Mater. 56, 1274–1287 (2008)

    Article  Google Scholar 

  160. Gururaja S., Taya M., Kang Y.S.: Design of ferromagnetic shape memory alloy composite made of Fe and TiNi particles. J. Appl. Phys. 102, 064910 (2007)

    Article  Google Scholar 

  161. Hahnlen R., Dapino M.J.: NiTi–Al interface strength in ultrasonic additive manufacturing composites. Compos. Part B 59, 101–108 (2014)

    Article  Google Scholar 

  162. Haldar K., Lagoudas D.C., Karaman I.: Magnetic field-induced martensitic phase transformation in magnetic shape memory alloys: modeling and experiments. J. Mech. Phys. Solids 69, 33–66 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  163. Hamada K., Lee J., Mizuuchi K., Taya M., Inoue K.: Thermomechanical behavior of TiNi shape memory alloy fiber reinforced 6061 aluminum matrix composite. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 29A(3A), 1127–1135 (1998)

    Article  Google Scholar 

  164. Hamming L.W., Fan X.W., Messersmith P.B., Brinson L.C.: Mimicking mussel adhesion to improve interfacial properties in composites. Compos. Sci. Technol. 68, 2042–2048 (2008)

    Article  Google Scholar 

  165. Hannula S.P., Aaltio I., Ge Y., Lahelin M., Söderberg O.: Processing and properties of Ni-Mn-Ga magnetic shape memory alloy based hybrid materials. Curr. Appl. Phys. 12, S63–S67 (2012)

    Article  Google Scholar 

  166. Hao S., Cui L., Jiang D., Han X., Ren Y., Jiang J., Liu Y., Liu Z., Mao S., Wang Y., Li Y., Ren X., Ding X., Wang S., Yu C., Shi X., Du M., Yang F., Zheng Y., Zhang Z., Li X., Brown D.E., Li J.: A transforming metal nano composite with large elastic strain, low modulus, and high strength. Science 339, 1191–1194 (2013)

    Article  Google Scholar 

  167. Hao, S., Cui, L., Jiang, D., Yu, C., Jiang, J., Shi, X., Liu, Z., Wang, S., Wang, Y., Brown, D.E., Ren, Y.: Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis. Appl. Phys. Lett. (2013). doi:10.1063/1.4809954

  168. Hao, S., Cui, L., Shao, Y., Jiang, J., Jiang, D., Wang, S., Du, M., Wang, Y., Brown, D.E., Ren, Y.: In situ X-ray diffraction study of deformation behavior in a Fe/NiTi composite. Appl. Phys. Lett. 101 (2012). Art. no. 221904

  169. Hartl, D., Lagoudas, D.: Thermomechanical characterization of shape memory alloy materials. In: Lagoudas, D. (ed.) Shape Memory Alloys: Modeling and Engineering Applications, Chap. 2, pp. 53–119. Springer, New York (2008)

  170. Hartl, D., Lagoudas, D., Mabe, J., Calkins, F.: Use of Ni60Ti shape memory alloy for active jet engine chevron application, Part I: Thermomechanical characterization. Smart Mater. Struct. 19 (2009). Art. no. 015020

  171. Hartl D.J., Chatzigeorgiou G., Lagoudas D.C.: Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int. J. Plast. 26, 1485–1507 (2010)

    Article  MATH  Google Scholar 

  172. Hartl D.J., Lagoudas D.: Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221(Special Issue), 535–552 (2007)

    Article  Google Scholar 

  173. Hartl, D.J., Lagoudas, D.: Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys. Smart Mater. Struct. 18 (2009). Art. no. 104017

  174. Hawkins, L.E., Vick, B., Rogers, C.A.: An investigation of the transient thermal response of a shape memory alloy composite beam. In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural Dynamics and Materials Conference, vol. 0941, pp. 1972–1978 (1990)

  175. Hebda D.A., Whitlock M.E., Ditman J.B., White S.R.: Manufacturing of adaptive graphite/epoxy structures with embedded Nitionol wires. J. Intell. Mater. Syst. Struct. 6, 220–228 (1995)

    Article  Google Scholar 

  176. Heller, L., Vokoun, D., Sittner, P., Finckh, H.: 3D flexible NiTi-braided elastomer composites for smart structure applications. Smart Mater. Struct. (2012). doi:10.1088/0964-1726/21/4/045016

  177. Herzog H., Jacquet E.: From a shape memory alloys model implementation to a composite behavior. Comput. Mater. Sci. 39, 365–375 (2007)

    Article  Google Scholar 

  178. Hill R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 13, 357–371 (1963)

    Article  MATH  Google Scholar 

  179. Hill R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  180. Hinz D., Scheerbaum N., Gutfleisch O., Müller K.H., Schultz L.: Polyester-bonded textured composites with sing-crystalline shape memory Ni-Mn-Ga particles. J. Magn. Magn. Mater. 310, 2785–2787 (2007)

    Article  Google Scholar 

  181. Ho, M.P., Lau, K.T., Au, H.Y., Dong, Y., Tam, H.Y.: Structural health monitoring of an asymmetrical SMA reinforced composite using embedded FBG sensors. Smart Mater. Struct. 22 (2013). Art. no. 125015

  182. Hosseini S.A., Sadrnezhaad S.K., Ekrami A.: Phase transformation behavior of porous NiTi alloy fabricated by powder metallurgical method. Mater. Sci. Eng. C 29, 2203–2207 (2009)

    Article  Google Scholar 

  183. Hu J., Wu G., Zhang Q., Gou H.: Mechanical properties and damping capacity of SiC p /TiNi f /Al composite with different volume fraction of SiC particle. Compos. Part B 66, 400–406 (2014)

    Article  Google Scholar 

  184. Hu J., Wu G., Zhang Q., Kang P., Liu Y.: Microstructure of multilayer interface in an Al matrix composite reinforced by TiNi fiber. Micron 64, 57–65 (2014)

    Article  Google Scholar 

  185. Hu J., Zhang Q., Liu Y., Wu G.: Phase transformation behaviors of TiNi fibers embedded in an aluminum matrix. J. Alloys Compd. 589, 491–497 (2014)

    Article  Google Scholar 

  186. Hu J., Zhang Q., Wu G., Liu Y., Li D.: Effect of pre-oxidation of TiNi fibers on the interfacial and mechanical property of TiNi f /Al composite. Mater. Sci. Eng. A 597, 20–28 (2014)

    Article  Google Scholar 

  187. Hu L., Kothalkar A., Proust G., Karaman I., Radovic M.: Fabrication and characterization of NiTi/Ti3SiC2 and NiTi/Ti2AlC composites. J. Alloys Compd. 610, 635–644 (2014)

    Article  Google Scholar 

  188. Huang M., Brinson L.C.: A multi variant model for single crystal shape memory alloy behavior. J. Mech. Phys. Solids 46, 1379–1409 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  189. Huet C.: Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies. Mech. Mater. 31, 787–829 (1999)

    Article  Google Scholar 

  190. Ibrahim H.H., Tawfik M., Negm H.M.: Limit-cycle oscillation of shape memory alloy hybrid composite plates at elevated temperatures. Mech. Adv. Mater. Struct. 16, 429–441 (2009)

    Article  Google Scholar 

  191. Irzhak A., Koledov V., Zakharov D., Lebedev G., Mashirov A., Afonina V., Akatyeva K., Kalashnikov V., Sitnikov N., Tabachkova N., Shelyakov A., Shavrov V.: Development of laminated nano composites on the bases of magnetic and non-magnetic shape memory alloys: towards new tools for nanotechnology. J. Alloys Compd. 586, S464–S468 (2014)

    Article  Google Scholar 

  192. Ismail M.H., Goodall R., Davies H.A., Todd I.: Formation of microporous NiTi by transient liquid phase sintering of elemental powders. Mater. Sci. Eng. C 32, 1480–1485 (2012)

    Article  Google Scholar 

  193. Ismail M.H., Goodall R., Davies H.A., Todd I.: Porous NiTi alloy by metal injection moulding/sintering of element powders: effect of sintering temperature. Mater. Lett. 70, 142–145 (2012)

    Article  Google Scholar 

  194. Itin V.I., Gyunter V.E., Shabalovskaya S.A., Sachdeva R.L.C.: Mechanical properties and shape memory of porous nitinol. Mater. Charact. 32, 179–187 (1994)

    Article  Google Scholar 

  195. Jang B.K., Kishi T.: Influence of stacking angle of carbon fibers on fracture behavior of TiNi fiber impregnated CFRP composites. J. Alloys Compd. 49, 208–212 (2006)

    Article  Google Scholar 

  196. Jia J., Rogers C.A.: Formulation of a mechanical model for composites with embedded SMA actuators. J. Mech. Des. Trans. ASME 114, 670–676 (1992)

    Article  Google Scholar 

  197. Jiang D., Cui L., Zheng Y., Zhao X., Li Y.: Constrained martensitic transformation in an in situ lamella TiNi/NbTi shape memory composite. Mater. Sci. Eng. A 515, 131–133 (2009)

    Article  Google Scholar 

  198. Jiang, D., Jiang, J., Shi, X., Jiang, X., Jiao, S., Cui, L.: Constrained martensitic transformation in nanocrystalline TiNi/NbTi shape memory composites. J. Alloys Compd. (2011). doi:10.1016/j.jallcom.2011.10.104

  199. Jiang H.J., Cao S., Ke C.B., Ma X., Zhang X.P.: Nano-sized SiC particle reinforced NiTi alloy matrix shape memory composite. Mater. Lett. 100, 74–77 (2013)

    Article  Google Scholar 

  200. Jiang J., Cui L., Zheng Y., Jiang D., Liu Z., Zhao K.: Narrow hysteresis behavior of TiNi shape memory alloy constrained by NbTi matrix during incomplete transformation. Mater. Sci. Eng. A 536, 33–36 (2012)

    Article  Google Scholar 

  201. Jiang J., Cui L.S., Zheng Y.J., Jiang D.Q., Liu Z.Y., Zhao K.: Negative thermal expansion arrest point memory effect in TiNi shape memory alloy and NbTi/TiNi composite. Mater. Sci. Eng. A 549, 114–117 (2012)

    Article  Google Scholar 

  202. Johansen K., Voggenreiter H., Eggeler G.: On the effect of TiC particles on the tensile properties and on the intrinsic two way effect of NiTi shape memory alloys produced by powder metallurgy. Mater. Sci. Eng. A 273–275, 410–414 (1999)

    Article  Google Scholar 

  203. Jonnalagadda K., Kline G.E., Sottos N.: Local displacements and load transfer in shape memory alloy composites. Exp. Mech. 37, 78–86 (1997)

    Article  Google Scholar 

  204. Jonnalagadda K., Sottos N., Qidwai M., Lagoudas D.: Transformation of embedded shape memory alloy ribbons. Math. Contr. Smart Struct. 3039, 481–486 (1998)

    Google Scholar 

  205. Jonnalagadda, K., Sottos, N.R.: Influence of adhesion on micromechanical behavior of SMA composites. In: Proceedings of the SPIE, vol. 2442, pp. 143–151. San Diego, CA (1995)

  206. Jung B.S., Kong J.P., Li N., Kim Y.M., Kim M.S., Ahn S.H., Cho M.: Numerical simulation and verification of a curved morphing composite structure with embedded shape memory alloy wire actuators. J. Intell. Mater. Syst. Struct. 24, 89–98 (2012)

    Article  Google Scholar 

  207. Jung B.S., Kong J.P., Li N., Kim Y.M., Kim M.S., Ahn S.H., Cho M.: Numerical simulation and verification of a curved morphing composite structure with embedded shape memory alloy wire actuators. J. Intell. Mater. Syst. Struct. 24, 89–98 (2013)

    Article  Google Scholar 

  208. Kang K.W., Kim J.K.: Effect of shape memory alloy on impact damage behavior and residual properties of glass/epoxy laminates under low temperature. Compos. Struct. 88, 455–460 (2009)

    Article  Google Scholar 

  209. Kanit T., Forest S., Galliet I., Mounoury V., Jeulin D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40, 3647–3679 (2003)

    Article  MATH  Google Scholar 

  210. Karaca H., Karaman I., Basaran B., Lagoudas D., Chumlyakov Y., Maier H.: On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater. 55, 4253–4269 (2007)

    Article  Google Scholar 

  211. Karaca H., Karaman I., Basaran B., Ren Y., Chumlyakov Y., Maier H.: Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—a new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983–998 (2009)

    Article  Google Scholar 

  212. Karaca H.E., Karaman I., Basaran B., Chumlyakov Y.I., Maier H.J.: Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 54, 233–245 (2006)

    Article  Google Scholar 

  213. Kauffmann-Weiss S., Scheerbaum N., Liu J., Klauss H., Schultz L., Mäder E., Häßler R., Heinrich G., Gutfleisch O.: Reversible magnetic field induced strain in Ni2MnGa–polymer-composites. Adv. Eng. Mater. 14, 20–27 (2012). doi:10.1002/adem.201100128

    Article  Google Scholar 

  214. Khalili S.M.R., Shiravi M., Nooramin A.S.: Mechanical behavior of notched plate repaired with polymer composite and smart patches—experimental study. J. Reinf. Plastics Compos. 29, 3021–3037 (2010). doi:10.1177/0731684410363179

    Article  Google Scholar 

  215. Khalili S.M.R., Shokuhfar A., Ashenai Ghasemi F., Malekzadeh K.: Dynamic response of smart hybrid composite plate subjected to low-velocity impact. J. Compos. Mater. 41, 2347–2370 (2007)

    Article  Google Scholar 

  216. Kiefer B., Lagoudas D.C.: Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. 85, 4289–4329 (2005) Special Issue: Recent Advances in Theoretical Mechanics, in Honor of SES 2003 A.C. Eringen Medalist G.A. Maugin

    Article  Google Scholar 

  217. Kiefer, B., Lagoudas, D.C.: Modeling of magnetic SMAs. In: Lagoudas, D. (ed.) Shape Memory Alloys: Modeling and Engineering Applications, Chap. 7, pp. 53–119. Springer, New York (2008)

  218. Kim D.J., Kim H.A., Chung Y.S., Choi E.: Pullout resistance of straight NiTi shape memory alloy fibers in cement mortar after cold drawing and heat treatment. Compos. Part B 67, 588–594 (2014)

    Article  Google Scholar 

  219. Kim, D.J., Kim, H.A., Chung, Y.S., Choi, E.: Pullout resistance of deformed shape memory alloy fibers embedded in cement mortar. J. Intell. Mater. Syst. Struct. (2015). doi:10.1177/1045389X14566524

  220. Kim E.H., Lee I., Roh J.H., Bae J.S., Choi I.H., Koo K.N.: Effects of shape memory alloys on low velocity impact characteristics of composite plates. Compos. Struct. 93, 2903–2909 (2011)

    Article  Google Scholar 

  221. Kim H.J., Song S.H., Ahn S.H.: A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater. Struct. 22, 014007 (2013)

    Article  Google Scholar 

  222. Kirkby E.L., Michaud V.J., Månson J.A.E., Sottos N.R., White S.R.: Performance of self-healing epoxy with micro encapsulated healing agent and shape memory alloy wires. Polymer 50, 5533–5538 (2009)

    Article  Google Scholar 

  223. Kirkby, E.L., O’Keane, J., de Oliveira, R., Michaud, V.J., Månson, J.A.E.: Tailored processing of epoxy with embedded shape memory alloy wires. Smart Mater. Struct. 18 (2009). Art. no. 095043

  224. Kirkby E.L., Rule J.D., Michaud V.J., Sottos N.R., White S.R., Månson J.A.E.: Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv. Funct. Mater. 18, 2253–2260 (2008)

    Article  Google Scholar 

  225. Ko, P.L., Chang, F.L., Li, C.H., Chen, J.Z., Cheng, I.C., Tung, Y.C., S.-H., C., Lin, P.C.: Dynamically programmable surface micro-wrinkles on PDMS-SMA composite. Smart Mater. Struct. 23 (2014). Art. no. 115007

  226. Kockar B., Karaman I., Kim J.I., Chumlyakov Y.I., Sharp J., Yu C.J.: Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy. Acta Mater. 56, 3630–3646 (2008)

    Article  Google Scholar 

  227. Kockar B., Ozcan H., Cakmak S.: Shape memory behavior of Ni-rich NiTi foam with different porosity percentages. J. Intell. Mater. Syst. Struct. 24, 1131–1137 (2013). doi:10.1177/1045389X12469450

    Article  Google Scholar 

  228. Kohlhaas B., Klinkel S.: An FE2 model for the analysis of shape memory alloy fiber-composites. Comput. Mech. 55, 421–437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  229. Kothalkar A., Cerit A., Proust G., Basu S., Radovic M., Karaman I.: Interfacial study of NiTi-Ti3SiC2 solid state diffusion bonded joints. Mater. Sci. Eng. A 622, 168–177 (2015)

    Article  Google Scholar 

  230. Kothalkar A.D., Benitez R., Hu L., Radovic M., Karaman I.: Thermo-mechanical response and damping behavior of shape memory alloy—MAX phase composites. Metall. Mater. Trans. A 45A, 2646–2658 (2014). doi:10.1007/s11661-014-2193-5

    Article  Google Scholar 

  231. Kumar P.K., Caer C., Atkinson G., Patoor E., Lagoudas D.C.: The influence of stress and temperature on the residual strain generated during pseudoelastic cycling of NiTi sma wires. Proc. SPIE 7978, 306–312 (2006)

    Google Scholar 

  232. Lagoudas, D. (eds): Shape Memory Alloys: Modeling and Engineering Applications. Springer, New York (2008)

    MATH  Google Scholar 

  233. Lagoudas D., Hartl D., Chemisky Y., Machado L., Popov P.: Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int. J. Plast. 32–33, 155–183 (2012)

    Article  Google Scholar 

  234. Lagoudas D., Vandygriff E.: Processing and characterization of NiTi porous SMA by elevated pressure sintering. J. Intell. Mater. Syst. Struct. 13, 837–850 (2002)

    Article  Google Scholar 

  235. Lagoudas D.C., Bo Z.: Stress induced phase transformations in piezoelectric laminates with shape memory alloy layers. Trans. AMSE Appl. Mech. Div. 167, 107–118 (1993)

    Google Scholar 

  236. Lagoudas D.C., Bo Z.: The cylindrical bending of composite plates with piezoelectric and SMA layers. Smart Mater. Struct. 3, 309–317 (1994)

    Article  Google Scholar 

  237. Lagoudas D.C., Boyd J.G., Bo Z.: Micromechanics of active composites with SMA fibers. J. Eng. Mater. Technol. 116, 337–347 (1994)

    Article  Google Scholar 

  238. Lagoudas D.C., Entchev P.B., Popov P., Patoor E., Brinson L.C., Gao X.: Shape memory alloys, part II: modeling of polycrystals. Mech. Mater. 38, 430–462 (2006)

    Article  Google Scholar 

  239. Lagoudas D.C., Gavazzi A.C., Nigam H.: Elastoplastic behavior of metal matrix composites based on incremental plasticity and the Mori–Tanaka averaging scheme. Comput. Mech. 8, 193–203 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  240. Lagoudas D.C., Moorthy D., Qidwai M.A., Reddy J.N.: Modeling of the thermomechanical response of active laminates with SMA strips using the layerwise finite element method. J. Intell. Mater. Syst. Struct. 8, 476–488 (1997)

    Article  Google Scholar 

  241. Lagoudas D.C., Tadjbakhsh I.G.: Active flexible rods with embedded SMA fibers. Smart Mater. Struct. 1, 162–167 (1992)

    Article  Google Scholar 

  242. Lagoudas D.C., Tadjbakhsh I.G.: Deformations of active flexible rods with embedded line actuators. Smart Mater. Struct. 2, 71–81 (1993)

    Article  Google Scholar 

  243. Lahelin M., Aaltio I., Heczko O., Söderberg O., Ge Y., Löfgren B., Hannula S.P., Seppälä J.: DMA testing of Ni-Mn-Ga/polymer composites. Compos. Part A 40, 125–129 (2009)

    Article  Google Scholar 

  244. Lebensohn, R.A., Ponte Castaneda, P., Brenner, R., Castelnau, O.: Full-field vs. homogenization methods to predict microstructure-property relations for polycrystalline materials. In: Ghosh, S., Dimiduk, D. (eds.) Computational Methods for Microstructure-Property Relationships, pp. 393–441. Springer, New York (2011)

  245. Leclerc H., Pri J.N., Roux S., Hild F.: Voxel-scale digital volume correlation. Exp. Mech. 51, 479–490 (2011)

    Article  Google Scholar 

  246. Lee J., Hwang J., Lee D., Ryu H.J., Hong S.H.: Enhanced mechanical properties of spark plasma sintered NiTi composites reinforced with carbon nanotubes. J. Alloys Compd. 617, 505–510 (2014)

    Article  Google Scholar 

  247. Lee J.K., Taya M.: Strengthening mechanism of shape memory alloy reinforced metal matrix composite. Scr. Mater. 51, 443–447 (2004)

    Article  Google Scholar 

  248. Lee J.K., Taya M.: Modeling for piezoelectric-shape memory alloy composites. Arch. Appl. Mech. 81, 629–640 (2011)

    Article  MATH  Google Scholar 

  249. Lei H., Wang Z., Zhou B., Tong L., Wang X.: Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model. Mater. Des. 40, 138–147 (2012)

    Article  Google Scholar 

  250. Lelieveld, C.M.J.L., Jansen, K.M.B.: Thermal-electric characterization and modelling of a smart composite structure for architectural applications. Smart Mater. Struct. 23 (2014). Art. no. 065010

  251. Leng J., Lan X., Liu Y., Du S.: Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011)

    Article  Google Scholar 

  252. Lester B.T., Chemisky Y., Lagoudas D.C.: Transformation characteristics of SMA composites. Smart Mater. Struct. 20, 094,002 (2011)

    Article  Google Scholar 

  253. Lester, B.T., Kothalkar, A., Karaman, I., Radovic, M., Lagoudas, D.C.: Modeling of shape memory alloy-ceramic composites, Under Revision

  254. Levitas V.I., Ozsoy I.B.: Thermomechanical modeling of stress-induced transformations. Part 1. Thermodynamics and kinetics of coupled interface propagation and reorientation. Int. J. Plast. 25, 239–280 (2009)

    Article  MATH  Google Scholar 

  255. Lewis A.C., Geltmacher A.B.: Image-based modeling of the response of experimental 3D microstructures to mechanical loading. Scr. Mater. 55, 81–85 (2006)

    Article  Google Scholar 

  256. Lewis A.C., Qidwai S.M., Jackson M., Geltmacher A.B.: Strategies for of 3-D experimental data with modeling and simulation. J. Miner. Met. Mater. Soc. 63, 35–39 (2011)

    Article  Google Scholar 

  257. Li B.Y., Rong L.J., Li Y.Y.: Porous NiTi prepared from elemental powder sintering. J. Mater. Res. 13, 2847–2851 (1998)

    Article  Google Scholar 

  258. Li B.Y., Rong L.J., Li Y.Y.: Fabrication of cellular NiTi inter metallic compounds. J. Mater. Res. 15, 10–13 (2000)

    Article  Google Scholar 

  259. Li B.Y., Rong L.J., Li Y.Y., Gjunter V.: A recent development in producing porous Ni-Ti shape memory alloys. Intermetallics 8, 881–884 (2000)

    Article  Google Scholar 

  260. Li D.S., Zhang X.P., Mai Y.W.: Lightweight NiTi shape memory alloy based composites with high damping capacity and high strength. J. Alloys Compd. 490, L15–L19 (2010)

    Article  Google Scholar 

  261. Li D.S., Zhang Y.P., Eggeler G., Zhang X.P.: High porosity and high-strength porous NiTi shape memory alloys with controllable pore characteristics. J. Alloys Compd. 470, L1–L5 (2009)

    Article  Google Scholar 

  262. Li J., Wang H., Liu J., Ruan J.: Effects of Nb addition on microstructure and mechanical properties of TiNiNb alloys fabricated by elemental powder sintering. Mater. Sci. Eng. A 609, 235–240 (2014)

    Article  Google Scholar 

  263. Li J.F., Zhang Z.Q., Li X.W., Peng Z.W.: Application of shape memory alloy TiNi in low thermal expansion copper composites. Mater. Des. 30, 314–318 (2009)

    Article  Google Scholar 

  264. Li X., Li M., Song G.: Energy-dissipating and self-repairing SMA-ECC composite material system. Smart Mater. Struct. 24, 025024 (2015)

    Article  Google Scholar 

  265. Li Y.H., Rong L.J., Li Y.Y.: Pore characteristics of porous NiTi alloy fabricated by combustion synthesis. J. Alloys Compd. 325, 259–262 (2001)

    Article  Google Scholar 

  266. Li Y.H., Rong L.J., Li Y.Y.: Compressive property of porous NiTi alloy synthesized by combustion synthesis. J. Alloys Compd. 345, 271–274 (2002)

    Article  Google Scholar 

  267. Liang, C., Jia, J., Rogers, C.A.: Behavior of shape memory alloy reinforced composite plates part II: results. In: Proceedings of the 30th AIAA/ASME/ASCE/AHS/ACS Structures, Structural Dynamics and Materials Conference, vol. 1331, pp. 1504–1513 (1989)

  268. Liang C., Rogers C.A., Fuller C.R.: Acoustic transmission and radiation analysis of adaptive shape-memory alloy reinforced laminated plates. J. Sound Vib. 145, 23–41 (1991)

    Article  Google Scholar 

  269. Liang Y., Kuga Y., Taya M.: Design of membrane actuator based on ferromagnetic shape memory alloy composite for synthetic jet applications. Sens. Actuators A 125, 512–518 (2006)

    Article  Google Scholar 

  270. Liang Y., Taya M., Xiao J.Q., Xiao G.: Design of an inchworm actuator based on a ferromagnetic shape memory alloy composite. Smart Mater. Struct. 21, 115005 (2012)

    Article  Google Scholar 

  271. Liu D.M., Nie Z.H., Wang G., Wang Y.D., Brown D.E., Pearson J., Liaw P.K., Ren Y.: In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded Ni-Co-Mn-In composite. Mater. Sci. Eng. A 557, 3561–3571 (2010)

    Article  Google Scholar 

  272. Liu J., Scheerbaum N., Kauffmann-Weiss S., Gutfleisch O.: NiMn-based alloys and composites for magnetically controlled dampers and actuators. Adv. Eng. Mater. 14, 653–667 (2012). doi:10.1002/adem.201200038

    Article  Google Scholar 

  273. Liu J., Scheerbaum N., Weiß S., Gutfleisch O.: Ni-Mn-In-Co single-crystalline particles for magnetic shape memory composites. Appl. Phys. Lett. 95, 152503 (2009). doi:10.1063/1.3249585

    Article  Google Scholar 

  274. Liu L., Lin C., Zhou C.: The constrained stress-induced \({\varepsilon}\) reverse martensitic transformation characteristic of Fe-Mn-Si alloy embedded in cement matrix. Appl. Mech. Mater. 44–47, 2229–2233 (2011)

    Article  Google Scholar 

  275. Liu X., Wu S., Yeung K.W.K., Chan Y.L., Hu T., Xu Z., Liu X., Chung J.C.Y., Cheung K.M.C., Chu P.K.: Relationship between osseointegration and superplastic biomechanics in porous NiTi scaffolds. Biomaterials 32, 330–338 (2011)

    Article  Google Scholar 

  276. Liu Y., Al-Matar B., Newaz G.: An investigation on the interface in a NiTi short-fiber-reinforced 6061 aluminum composite by transmission electron microscope. Metall. Mater. Trans. A 39A, 2749–2759 (2008)

    Article  Google Scholar 

  277. Liu Z., Cui L., Liu Y., Jiang D., Jiang J., Shi X., Shao Y., Zheng Y.: Influence of internal stress coupling on the deformation behavior of NiTi-Nb nanowire composites. Scr. Mater. 77, 75–78 (2014)

    Article  Google Scholar 

  278. Liu Z., Cui L., Yu C., Jiang J., Jiang D., Shi X., Guo F., Wang Z., Ren Y.: Influence of annealing and pre-straining on the coupling effect of a TiNi-Nb nanowire composite. Mater. Sci. Forum 787, 307–312 (2014)

    Article  Google Scholar 

  279. Liu Z., Liu Y., Jiang D., Yang F., Hao S., Ren Y., Cui L.: Local strain matching between Nb nanowire and a phase transforming NiTi matrix in an in-situ composite. Mater. Sci. Eng. A 610, 6–9 (2014)

    Article  Google Scholar 

  280. López G.A., Barrado M., Bocanegra E.H., San Juan J.M., Nó M.L.: Influence of the matrix and of the thermal treatment on the martensitic transformation in metal matrix composites. Mater. Sci. Eng. A 481–482, 546–550 (2008)

    Article  Google Scholar 

  281. López G.A., Barrado M., San Juan J., Nó M.L.: Mechanical spectroscopy measurements on SMA high-damping composites. Mater. Sci. Eng. A 521, 359–362 (2009)

    Article  Google Scholar 

  282. López G.A., Barrado M., San Juan J.M., Nó M.L.: Interaction of Cu-Al-Ni shape memory alloys particles with molten In and In+Sn matrices. Mater. Sci. Eng. A 495, 304–309 (2008)

    Article  Google Scholar 

  283. Lu P., Cui F.S., Tan M.J.: A theoretical model for the bending of a laminated beam with SMA fiber embedded layer. Compos. Struct. 90, 458–464 (2009)

    Article  Google Scholar 

  284. Lu Z., Weng G.: A two-level micromechanical theory for a shape-memory alloy reinforced composite. Int. J. Plast. 16, 1289–1307 (2000)

    Article  MATH  Google Scholar 

  285. Ma J., Karaman I., Noebe R.D.: Medical applications of shape memory alloys. Int. Mater. Rev. 55, 257–315 (2010)

    Article  Google Scholar 

  286. Machado L., Savi M.: Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36, 683–691 (2003)

    Google Scholar 

  287. Mahendran M., Feuchtwanger J., Techapiesancharoenkij R., Bono D., O’Handley R.C.: Acoustic energy absorption in Ni-Mn-Ga/polymer composites. J. Magn. Magn. Mater. 323, 1098–1100 (2011)

    Article  Google Scholar 

  288. Majumder P., Bhattacharyya A.: On the anisotropic thermal conductivity of shape memory alloy single crystals. Acta Mech. 193, 5347–5365 (2007)

    Article  MATH  Google Scholar 

  289. Manzo J., Garcia E.: Methodology for design of an active rigidity joint. J. Intell. Mater. Syst. Struct. 20, 311–327 (2009)

    Article  Google Scholar 

  290. Marfia S.: Micro-macro analysis of shape memory alloy composites. Int. J. Solids Struct. 42, 3677–3699 (2005)

    Article  MATH  Google Scholar 

  291. Marfia S., Sacco E.: Analysis of SMA composite laminates using a multi scale modelling technique. Int. J. Numer. Methods Eng. 70, 1182–1208 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  292. Marfia S., Sacco E.: Micromechanics and homogenization of SMA-wire reinforced materials. J. Appl. Mech. 72, 259–268 (2007). doi:10.1115/1.1839186

    Article  MATH  Google Scholar 

  293. Mari D., Dunand D.C.: NiTi and NiTi-TiC composites: part I. Transformation and thermal cycling behavior. Metall. Mater. Trans. A 26A, 2833–2847 (1995)

    Article  Google Scholar 

  294. McDowell D.L., Ghosh S., Kalidindi S.R.: Representation and computational structure-property relations of random media. J. Miner. Met. Mater. Soc. 63, 45–51 (2011)

    Article  Google Scholar 

  295. Meo M., Antonucci E., Duclaux P., Giordano M.: Finite element simulation of low velocity impact on shape memory alloy composite plates. Compos. Struct. 71, 337–342 (2005)

    Article  Google Scholar 

  296. Meo M., Marulo F., Guida M., Russo S.: Shape memory alloy hybrid composites for improved impact properties for aeronautical applications. Compos. Struct. 95, 756–766 (2013)

    Article  Google Scholar 

  297. Meraghni F., Chemisky Y., Piotrowski B., Echchorfi R., Bourgeois N., Patoor E.: Parameter identification of a thermodynamic model for superelastic shape memory alloys using analytical calculation of the sensitivity matrix. Eur. J. Mech. A/Solids 45, 226–237 (2014)

    Article  Google Scholar 

  298. Mete Ozturk M., Bhattacharyya A.: Heat transfer in shape memory alloy thin films. Acta Mech. 225, 1029–1042 (2014). doi:10.1007/s00707-013-1074-0

    Article  MathSciNet  MATH  Google Scholar 

  299. Miranda G., Carvalho O., Silva F.S., Soares D.: Effect of sintering stage in NiTi short-fibre-reinforced aluminum-silicon composites interface properties. J. Compos. Mater. 47, 1625–1631 (2013). doi:10.1177/0021998312339893

    Article  Google Scholar 

  300. Mizuuchi K., Inoue K., Hamada K., Sugioka M., Itami M., Fukusumi M., Kawahara M.: Processing of TiNi SMA fiber reinforced AZ31 Mg alloy matrix composite by pulsed current hot pressing. Mater. Sci. Eng. A 367, 343–349 (2004)

    Article  Google Scholar 

  301. Monroe J.A., Cruz-Perez J., Yegin C., Karaman I., Geltmacher A.B., Everett R.K., Kainuma R.: Magnetic response of porous NiCoMnSn metamagnetic shape memory alloys fabricated using solid-state replication. Scr. Mater. 67, 116–119 (2012)

    Article  Google Scholar 

  302. Morgan N.B.: Medical shape memory alloy applications—the market and its products. Mater. Sci. Eng. A 378, 16–23 (2004)

    Article  Google Scholar 

  303. Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  304. Morin C., Moumni Z., Zaki W.: Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int. J. Plast. 27, 1959–1980 (2011)

    Article  MATH  Google Scholar 

  305. Mura T.: Micromechanics of Defects in Solids, 2nd revised edn. Mechanics of Elastic and Inelastic Solids. Kluwer Academic Publisher, Dordrecht (1987)

    Google Scholar 

  306. Murasawa G., Tohgo K., Ishii H.: The effect of fiber volume fraction and aspect ratio on the creation of internal stress in the matrix and deformation for short-fiber shape memory alloy composites. Smart Mater. Struct. 15, 33–40 (2006)

    Article  Google Scholar 

  307. Murasawa G., Yoneyama S.: Local strain distribution arising in shape memory alloy composite subjected to thermal loading. Mater. Trans. JIM 47, 766–771 (2006)

    Article  Google Scholar 

  308. Naghashian S., Fox B.L., Barnett M.R.: Actuation curvature limited for a composite beam with embedded shape memory alloy wires. Smart Mater. Struct. 23, 065002 (2014)

    Article  Google Scholar 

  309. Ipek Nakaş G., Dericioglu A.F., Bor c.: Fatigue behavior of TiNi foams processed by the magnesium space holder technique. J. Mech. Behav. Biomed. Mater. 4, 2017–2023 (2011)

    Article  Google Scholar 

  310. Ipek Nakaş G., Dericioğlu A.F., Bor c.: Monotonic and cyclic compressive behavior of superelastic TiNi foams processed by sintering using magnesium space holder technique. Mater. Sci. Eng. A 582, 140–146 (2013)

    Article  Google Scholar 

  311. Namli O., Taya M.: Design of piezo-SMA composite for thermal energy harvester under fluctuating temperature. J. Appl. Mech. 78, 031001 (2011)

    Article  Google Scholar 

  312. Nemat-Nasser S., Sui Y., Guo W., Isaacs J.: Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy. J. Mech. Phys. Solids 53, 2320–2346 (2005)

    Article  Google Scholar 

  313. Neuking K., Abu-Zarifa A., Eggeler G.: Surface engineering of shape memory alloy/polymer-composites: improvement of the adhesion between polymers and pseudoelastic shape memory alloys. Mater. Sci. Eng. A 7, 606–611 (2005)

    Google Scholar 

  314. Neuking K., Abu-Zarifa A., Eggeler G.: Polymer/NiTi-composites: fundamental aspects, processing and properties. Adv. Eng. Mater. 481–482, 1014–1023 (2008)

    Google Scholar 

  315. Neurohr A.J., Dunand D.C.: Mechanical anisotropy of shape-memory NiTi with two-dimensional networks of micro-channels. Acta Mater. 59, 4616–4630 (2011)

    Article  Google Scholar 

  316. Neurohr A.J., Dunand D.C.: Shape-memory NiTi with two-dimensional networks of micro-channels. Acta Biomater. 7, 1862–1872 (2011)

    Article  Google Scholar 

  317. Neuser S., Michaud V.: Fatigue response of solvent-based self-healing smart materials. Exp. Mech. 54, 293–304 (2014)

    Article  Google Scholar 

  318. Neuser S., Michaud V., White S.R.: Improving solvent-based self-healing materials through shape memory alloys. Polymer 53, 370–378 (2012)

    Article  Google Scholar 

  319. Ni D.R., Wang J.J., Zhou Z.N., Ma Z.Y.: Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J. Alloys Compd. 586, 368–374 (2014)

    Article  Google Scholar 

  320. Ni Q.Q., Zhang R.X., Natsuki T., Iwamoto M.: Stiffness and vibration characteristics of SMA/ER3 composites with shape memory alloy short fibers. Compos. Struct. 79, 501–507 (2007)

    Article  Google Scholar 

  321. Oehler S.D., Hartl D.J., Lopez R., Malak R.J., Lagoudas D.C.: Design optimization and uncertainty analysis of SMA morphing structures. Smart Mater. Struct. 21, 094016 (2012)

    Article  Google Scholar 

  322. Okazaki T., Mikami K., Furuya Y., Kishi Y., Yajima Z., Kubota T.: Magnetic properties of thin-film Fe-Pd alloy and magnetoelectric coupling in Fe-Pd/Ag/PZT/Ag/Fe-Pd laminate composites. J. Alloys Compd. 577, S300–S304 (2013)

    Article  Google Scholar 

  323. Oppenheimer S.M., Dunand D.C.: Porous NiTi by creep expansion of Argon-filled pores. Mater. Sci. Eng. A 523, 70–76 (2009)

    Article  Google Scholar 

  324. Otsuka K., Ren X.: Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005)

    Article  Google Scholar 

  325. Otsuka, K., Wayman, C.M. (eds.): Shape Memory Materials. Cambridge University Press, Cambridge (1999)

  326. Ozbulut O.E., Hurlebaus S., Desroches R.: Seismic response control using shape memory alloys: a review. J. Intell. Mater. Syst. Struct. 22, 1531 (2011)

    Article  Google Scholar 

  327. Paine J.S.N., Jones W.M., Rogers C.A.: NiTiNOL actuator to host composite interfacial adhesion in adaptive hybrid composites. AIAA J. 2405, 556–565 (1992)

    Google Scholar 

  328. Paine J.S.N., Rogers C.A.: The effect of thermoplastic composite processing on the performance of embedded nitinol actuators. J. Thermoplast. Compos. Mater. 4, 102–122 (1991)

    Article  Google Scholar 

  329. Paine J.S.N., Rogers C.A.: High velocity impact response of composites with surface bonded nitinol-SMA hybrid layers. J. Intell. Mater. Syst. Struct. 5, 530–535 (1994)

    Article  Google Scholar 

  330. Paine, J.S.N., Rogers, C.A.: Review of multi-functional SMA hybrid composite materials and their applications. In: Proceedings of the American Society of Mechanical Engineers, Aerospace Division—Adaptive Structures and Composite Materials: Analysis and Application, vol. 54. ASME (1994)

  331. Paine, J.S.N., Rogers, C.A.: Shape memory alloys for damage resistant composite structures. In: Proceedings of the SPIE: Active Materials and Smart Structures, vol. 2427, pp. 358–271. SPIE (1994)

  332. Paine J.S.N., Rogers C.A., Smith R.A.: Adaptive composite materials with shape memory alloy actuators for cylinders and pressure vessels. J. Intell. Mater. Syst. Struct. 6, 210–219 (1995)

    Article  Google Scholar 

  333. Paiva A., Savi M.A., Bragra A.M.B., Pacheco P.M.C.L.: A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. Int. J. Solids Struct. 42, 3439–3457 (2005)

    Article  MATH  Google Scholar 

  334. Panico M., Brinson L.: A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J. Mech. Phys. Solids 55, 2491–2511 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  335. Panico M., Brinson L.C.: Computational modeling of porous shape memory alloys. Int. J. Solids Struct. 45, 5613–5626 (2008)

    Article  MATH  Google Scholar 

  336. Pappadà S., Gren P., Tatar K., Gustafson T., Rametta R., Rossini E., Maffezzoli A.: Mechanical and vibration characteristics of laminated composite plates embedding shape memory alloy superplastic wires. J. Mater. Eng. Perform. 18, 531–664 (2009)

    Article  Google Scholar 

  337. Pappadà S., Rametta R., Largo A., Maffezzoli A.: Low-velocity impact response in composite plates embedding shape memory alloy wires. Polym. Compos. 33, 655–664 (2012)

    Article  Google Scholar 

  338. Pappadà S., Rametta R., Toia L., Coda A., Fumagalli L., Maffezzoli A.: Embedding of superplastic SMA wires into composite structures: evaluation of impact properties. J. Mater. Eng. Perform. 18, 522–630 (2009). doi:10.1007/s11665-009-9366-1

    Article  Google Scholar 

  339. Park J.S., Kim S.H., Jung S.N.: Optimal design of a variable-twist prop rotor incorporating shape memory alloy hybrid composites. Compos. Struct. 93, 2288–2298 (2011)

    Article  Google Scholar 

  340. Park J.S., Kim S.H., Jung S.N., Lee M.K.: Design and analysis of variable-twist tilt rotor blades using shape memory alloy hybrid composites. Smart Mater. Struct. 20, 015001 (2011)

    Article  Google Scholar 

  341. Park Y.C., Jo Y.J., Baek S.H., Furuya Y.: Fatigue design curve of a TiNi/Al shape memory alloy composite for aircraft stringer design. Smart Mater. Struct. 18, 055009 (2009)

    Article  Google Scholar 

  342. Park Y.C., Kang J.H., Lee J.K., Lee G.C., Furuya Y.: Effect of cold rolling on fatigue crack propagation of TiNi/Al6061 shape memory composite. Smart Mater. Struct. 16, 982–988 (2007)

    Article  Google Scholar 

  343. Park Y.C., Lee J.K., Lee S.P., Lee G.C., Lee J.H., Cho Y.H., Lee J.B.: A study on fatigue damage of shape memory alloy composite using NDE technique. Int. J. Modern Phys. B 20(25–27), 3775–3780 (2006)

    Article  Google Scholar 

  344. Patoor, E., Eberhardt, A., Berveiller, M.: Micromechanical modelling of superelasticity in shape memory alloys. J. Phys. IV C1-6, 277–292 (1996)

  345. Patoor E., Lagoudas D.C., Entchev P.B., Brinson L.C., Gao X.: Shape memory alloys, part I: general properties and modeling of single crystals. Mech. Mater. 38, 391–429 (2006)

    Article  Google Scholar 

  346. Payandeh Y., Meraghni F., Patoor E., Eberhardt A.: Effect of martensitic transformation on the debunking propagation in Ni-Ti shape memory wire composite. Mater. Sci. Eng. A 518, 35–40 (2009)

    Article  Google Scholar 

  347. Payandeh Y., Meraghni F., Patoor E., Eberhardt A.: Debonding initiation in a NiTi shape memory wire-epoxy matrix composite. influence of martensitic transformation. Mater. Des. 31, 1077–1084 (2010)

    Article  Google Scholar 

  348. Payandeh Y., Meraghni F., Patoor E., Eberhardt A.: Study of the martensitic transformation in NiTi-epoxy smart composite and its effect on the overall behavior. Mater. Des. 39, 104–110 (2012)

    Article  Google Scholar 

  349. Peraza Hernandez E., Hartl D.J., Galvan E., Malak R.: Design and optimization of a shape memory alloy-based self-folding sheet. J. Mech. Des. 135, 111007 (2013). doi:10.1115/1.4025382

    Article  Google Scholar 

  350. Peraza Hernandez E.A., Hartl D.J., Malak R.J.J.: Design and numerical analysis of an SMA mesh-based self-folding sheet. Smart Mater. Struct. 22, 094008 (2013). doi:10.1088/0964-1762/22/9/094008

    Article  Google Scholar 

  351. Hernandez Peraza E.A., Hu S., Kung H.W., Hartl D., Akleman E.: building smart self-folding structures. Comput. Graph. 37, 730–742 (2013)

    Article  Google Scholar 

  352. Pierard O., González C., Seguarado J., LLorca J., Doghri I.: Micromechanics of elasto-plastic materials reinforced with ellipsoidal inclusions. Int. J. Solids Struct. 44, 6945–6962 (2007)

    Article  MATH  Google Scholar 

  353. Pierard O., LLorca J., Seguarado J., Doghri I.: Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization. Int. J. Plast. 23, 1041–1060 (2007)

    Article  MATH  Google Scholar 

  354. Pindera M.J., Khatam H., Drago A., Bansal Y.: Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos. Part B Eng. 40, 349–378 (2009)

    Article  Google Scholar 

  355. Pinto F., Ciampa F., Meo M., Polimeno U.: Multifunctional SMArt composite material for in situ NDT/SHM and de-icing. Smart Mater. Struct. 21, 105010 (2012)

    Article  Google Scholar 

  356. Pinto, F., Meo, M.: Mechanical response of shape memory alloy-based hybrid composite subjected to low-velocity impacts. J. Compos. Mater. (2014). doi:10.1177/0021998314554119

  357. Piotrowski B., Ben Zineb T., Patoor E., Eberhardt A.: A finite element-based numerical tool for Ni47Ti44Nb9 SMA structures design: application to tightening rings. J. Intell. Mater. Syst. Struct. 23, 141–153 (2012)

    Article  Google Scholar 

  358. Piotrowski B., Ben Zineb T., Patoor E., Eberhardt A.: Modeling of niobium precipitates effect on the \({{\rm Ni}_{47} {\rm Ti}_{44} {\rm Nb}_{9}}\) shape memory alloy behavior. Int. J. Plast. 36, 130–147 (2012)

    Article  Google Scholar 

  359. Pons J., Cesari E., Seguí C., Masdeu F., Santamarta R.: Ferromagnetic shape memory alloys: alternatives to Ni-Mn-Ga. Mater. Sci. Eng. A 481–482, 57–65 (2008)

    Article  Google Scholar 

  360. Poon C.K., Lau K.T., Zhou L.M.: Design of pull-out stresses for prestrained SMA wire/polymer hybrid composites. Compos. Part B 36, 25–31 (2005)

    Article  Google Scholar 

  361. Porter G.A., Liaw P.K., Tiegs T.N., Wu K.H.: Ni-Ti SMA-reinforced Al composites. J. Miner. Met. Mater. Soc. 52, 52–56 (2000)

    Article  Google Scholar 

  362. Porter G.A., Liaw P.K., Tiegs T.N., Wu K.H.: Particle size reduction of NiTi shape-memory alloy powders. Scr. Mater. 43, 1111–1117 (2000)

    Article  Google Scholar 

  363. Porter G.A., Liaw P.K., Tiegs T.N., Wu K.H.: Fatigue and fracture behavior of nickel–titanium shape memory alloy reinforced aluminum composites. Mater. Sci. Eng. A 314, 186–193 (2001)

    Article  Google Scholar 

  364. Prahlad H., Chopra I.: Development of a strain-rate dependent model for uniaxial loading of SMA wires. J. Intell. Mater. Syst. Struct. 14, 429–442 (2003)

    Article  Google Scholar 

  365. Qidwai M.A., DeGiorgi V.G.: Numerical assessment of the dynamic behavior of hybrid shape memory alloy composite. Smart Mater. Struct. 13, 134–145 (2004)

    Article  Google Scholar 

  366. Qidwai M.A., Entchev P.B., Lagoudas D.C., DeGiorgi V.G.: Modeling of the thermomechanical behavior of porous shape memory alloys. Int. J. Solids Struct. 38, 8653–8671 (2001)

    Article  MATH  Google Scholar 

  367. Qidwai M.A., Lagoudas D.C.: On the thermodynamics and transformation surfaces of polycrystalline NiTi shape memory alloy material. Int. J. Plast. 16, 1309–1343 (2000)

    Article  MATH  Google Scholar 

  368. Qidwai M.A.S., Lewis A.C., Geltmacher A.B.: Using image-based computational modeling to study microstructure-yield correlations in metals. Acta Mater. 57, 4233–4247 (2009)

    Article  Google Scholar 

  369. Qidwai S.M., Turner D.M., Niezgoda S.R., Lewis A.C., Geltmacher A.B., Rowenhorst D.J., Kalidindi S.R.: Estimating the response of polycrystalline materials using sets of weighted statistical volume elements. Acta Mater. 60, 5284–5299 (2012)

    Article  Google Scholar 

  370. Qiu Z.X., Yao X.T., Yuan J., Soutis C.: Experimental research on strain monitoring in composite plates using embedded SMA wires. Smart Mater. Struct. 48, 1047–1053 (2006)

    Article  Google Scholar 

  371. Qu J., Cherkaoui M.: Fundamentals of Micromechanics of Solids. Wiley, Hoboken (2006)

    Book  Google Scholar 

  372. Raghavan J., Bartkiewicz T., Boyko S., Kupriyanov M., Rajapakse N., Yu B.: Damping, tensile, and impact properties of super elastic shape memory alloy (SMA) fiber-reinforced polymer composites. Compos. B 41, 214–222 (2010)

    Article  Google Scholar 

  373. Ratna D., Karger-Kocsis J.: Recent advances in shape memory polymers and composites: a review. J. Mater. Sci. 43, 254–269 (2008)

    Article  Google Scholar 

  374. Rey T., Fazan F., Robin E., Faure S., Le Cam J.B., Chignon G., Girard A., Favier D.: Mechanical characterization and comparison of different NiTi/silicone rubber interfaces. Int. J. Adhes. Adhes. 48, 67–74 (2014)

    Article  Google Scholar 

  375. Ro J., Baz A.: NITINOL-reinforced plates: part I. Thermal characteristics. Compos. Eng. 5, 61–75 (1995)

    Article  Google Scholar 

  376. Ro J., Baz A.: NITINOL-reinforced plates: part II. Static and buckling characteristics. Compos. Eng. 5, 77–90 (1995)

    Article  Google Scholar 

  377. Ro J., Baz A.: NITINOL-reinforced plates: part III. Dynamic characteristics. Compos. Eng. 5, 91–106 (1995)

    Article  Google Scholar 

  378. Ro, J., Baz, A.: Control of sound radiation from a NiTiNOL-reinforced plate into an acoustic cavity. In: Proceedings of SPIE, vol. 2715, Smart Structures and MaterialsSan Diego, CA, pp 220–232 (1996)

  379. Rogers, C.A., Barker, D.K.: Experimental studies of active strain energy tuning of adaptive composites. In: Proceedings of the 31st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 2234–2241 (1990)

  380. Rogers C.A., Fuller C.R., Liang C.: Active control of sound radiation from panels using embedded shape memory alloy fibers. J. Sound Vib. 136, 164–170 (1990)

    Article  Google Scholar 

  381. Rogers C.A., Liang C., Fuller C.R.: Modeling of shape memory alloy hybrid composites for structural acoustic control. J. Acoust. Soc. Am. 89, 210–220 (1990)

    Article  Google Scholar 

  382. Rogers, C.A., Liang, C., Jia, J.: Behavior of shape memory alloy reinforced composite plates part I: model formulations and control concepts. In: Proceedings of the 30th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, pp. 2011–2017 (1989)

  383. Rogers, C.A., Robertshaw, H.H.: Development of a novel smart material. In: Proceedings of the 1988 Winter Annual Meeting of the American Society of Mechanical Engineers, pp. 1–5 (1988)

  384. Romberg J., Hürrich C., Pötschke M., Kauffmann-Weiss S., Gaitzsch U., Roth S., Müllner P., Schultz L.: Geometric factors on magnetically driven actuation behavior for polycrystalline Ni-Mn-Ga and its composites. J. Alloys Compd. 577S, S344–S347 (2013)

    Article  Google Scholar 

  385. Rossi S., Deflorian F., Pegoretti A., D’Orazio D., Gialanella S.: Chemical and mechanical treatments to improve the surface properties of shape memory NiTi wires. Surf. Coat. Technol. 22, 2214–2222 (2008)

    Article  Google Scholar 

  386. Ryan G., Pandit A., Apatsidis D.: Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27, 2651–2670 (2006)

    Article  Google Scholar 

  387. Ryu J., Jung B.S., Kim M.S., Kong J., Cho M., Ahn S.H.: Numerical simulation of hybrid composite shape-memory alloy wire-embedded structures. J. Intell. Mater. Syst. Struct. 22, 1941–1948 (2011)

    Article  Google Scholar 

  388. Sadrnezhaad S.K., Nemati N.H., Bagheri R.: Improved adhesion of NiTi wire to silicone matrix for smart composite medical applications. Mater. Des. 30, 3667–3672 (2009)

    Article  Google Scholar 

  389. Saint-Sulpice L., Arbab Chirani S., Calloch S.: A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings. Mech. Mater. 41, 12–26 (2009)

    Article  Google Scholar 

  390. Samadpour M., Sadighi M., Shakeri M., Zamani H.: Vibration analysis of thermally buckled sma hybrid composite sandwich plate. Compos. Struct. 119, 251–263 (2015)

    Article  Google Scholar 

  391. San Juan J., Nó M.L.: Internal friction in a new kind of metal matrix composites. Mater. Sci. Eng. A 442, 429–432 (2006)

    Article  Google Scholar 

  392. Martín San D., Risanti D.D., Garcés G., Rivera-Diaz-del Castillo P.E.J., van der Zwaag S.: On the production and properties of novel particulate NiTi p /AA2124 metal matrix composites. Mater. Sci. Eng. A 526, 250–252 (2009)

    Article  Google Scholar 

  393. Sasikumar P., Suresh R., Gupta S.: Stochastic finite element analysis of layered composite beams with spatially varying non-gaussian inhomogeneities. Acta Mech. 225, 1503–1522 (2014). doi:10.1007/s00707-013-1009-9

    Article  MATH  Google Scholar 

  394. Saunders W.R., Robertshaw H.H., Rogers C.A.: Structural acoustic control of a shape memory alloy composite beam. J. Intell. Mater. Syst. Struct. 2, 508–527 (1991)

    Article  Google Scholar 

  395. Savi M.A., Paiva A.: Describing internal subloops due to incomplete phase transformations in shape memory alloys. Arch. Appl. Mech. 74, 637–647 (2005)

    Article  MATH  Google Scholar 

  396. Sawaguchi T., Kikuchi T., Ogawa K., Kajiwara S., Ikeo Y., Kojima M., Ogawa T.: Development of prestressed concrete using Fe-Mn-Si-based shape memory alloys containing NbC. Mater. Trans. JIM 47, 580–583 (2006)

    Article  Google Scholar 

  397. Scheerbaum N., Hinz D., Gutfleisch O., Mülller K.H., Schultz L.: Textured polymer bonded composites with Ni-Mn-Ga magnetic shape memory particles. Acta Mater. 55, 2707–2713 (2007)

    Article  Google Scholar 

  398. Segurado J., LLorca J.: Computational micromechanics of composites: the effect of particle spatial distribution. Mech. Mater. 38, 873–883 (2006)

    Article  Google Scholar 

  399. Seiani H.A., Ghazavi A.: A thermo-micro-mechanical modeling for smart shape memory alloy woven composite under in-plane biaxial deformation. Int. J. Mech. Mater. Des. 5, 111–122 (2009)

    Article  Google Scholar 

  400. Shaw J., Kyriakides S.: Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43, 1243–1281 (1995)

    Article  Google Scholar 

  401. Simpson, J.C., Boller, C.: Design and performance of a shape memory alloy-reinforced composite aerodynamic profile. Smart Mater. Struct. 17 (2008). Art. no. 025028

  402. Smith, C., Villanueva, A., Joshi, K., Tadesse, Y., Priya, S.: Working principle of bio-inspired shape memory alloy composite actuators. Smart Mater. Struct. 20 (2011). Art. no. 012001

  403. Smith N.A., Anton G.G., Ellis A.B., Crone W.C.: Improved adhesion between nickel-titanium shape memory alloy and a polymer matrix via silane coupling agents. Compos. Part A 35, 1307–1312 (2004)

    Article  Google Scholar 

  404. Sofocleous K., Ogin S.L., Tsakiropoulos P., Draconakis V., Doumanidis C.: Controlled impact testing of woven fabric composites with and without reinforcing shape-memory alloy wires. J. Compos. Mater. 48, 3799–3813 (2014)

    Article  Google Scholar 

  405. Soghrati S., Thakre P.R., White S.R., Sottos N.R., Geubelle P.H.: Computational modeling and design of actively-cooled microvascular materials. Int. J. Heat Mass Transf. 55, 5309–5321 (2012)

    Article  Google Scholar 

  406. Song G., Ma N., Li H.N.: Applications of shape memory alloys in civil structures. Eng. Struct. 28, 1266–1274 (2006)

    Article  Google Scholar 

  407. Song G., Sun Q., Cherkaoui M.: Role of microstructure in the thermomechanical behavior of sma composites. J. Eng. Mater. Technol. 121, 86–92 (1999)

    Article  Google Scholar 

  408. Strutt E.R., Olevsky E.A., Meyers M.A.: Combustion synthesis/quasi-isostatic pressing of TiC-NiTi cermets: processing and mechanical response. J. Mater. Sci. 43, 6513–6526 (2008)

    Article  Google Scholar 

  409. Strutt E.R., Radetic T., Olevsky E.A., Meyers M.A.: Combustion synthesis/quasi-isostatic pressing of \({{\rm TiC}_{0.7}-{\rm NiTi}}\) cermets: microstructure and transformation characteristics. J. Mater. Sci. 43, 5905–5923 (2008)

    Article  Google Scholar 

  410. Sun L., Huang W.M., Ding Z., Zhao Y., Wang C.C., Purnawali H., Tang C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)

    Article  Google Scholar 

  411. Taheri-Behrooz F., Taheri F., Hosseinzadeh R.: Characterization of a shape memory alloy hybrid composite subject to static loading. Mater. Des. 32, 2923–2933 (2011)

    Article  Google Scholar 

  412. Tanaka K., Nishimura F., Hayashi T., Tobushi H., Lexcellent C.: Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads. Mech. Mater. 19, 281–292 (1995)

    Article  Google Scholar 

  413. Tang W., Sundman B., Sandström R., Qiu C.: New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Metall. 47, 3457–3468 (1999)

    Google Scholar 

  414. Taya, M., Liang, Y., Namli, O.C., Tamagawa, H., Howie, T.: Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite. Smart Mater. Struct. 22 (2013). Art. no. 105003

  415. Thorat R.R., Risanti D.D., San Martín D., Garces G., RiveraDíazdel Catillo P.E.J., van der Zwaag S.: On the transformation behavior of NiTi particulate reinforced AA2124 composites. J. Alloys Compd. 477, 307–315 (2009)

    Article  Google Scholar 

  416. Tian B., Chen F., Tong Y., Li L., Zheng Y.F.: Magnetic field induced strain and damping behavior of Ni-Mn-Ga particles/epoxy resin composite. J. Alloys Compd. 604, 137–141 (2014)

    Article  Google Scholar 

  417. Tian B., Chen F., Tong Y.X., Li L., Zheng Y.F.: Bending properties of epoxy resin matrix composites filled with Ni-Mn-Ga ferromagnetic shape memory alloy powders. Mater. Lett. 63, 1729–1732 (2009)

    Article  Google Scholar 

  418. Tian B., Chen F., Tong Y.X., Li L., Zheng Y.F., Liu Y.: The orientation dependence of transformation strain of Ni-Mn-Ga polycrystalline alloy and its composite with epoxy resin. J. Alloys Compd. 505, 680–684 (2010)

    Article  Google Scholar 

  419. Tobushi H., Hayashi S., Hoshio K., Makino Y., Miwa N.: Bending actuation characteristics of shape memory composite with SMA and SMP. J. Intell. Mater. Syst. Struct. 17, 1075–1081 (2006)

    Article  Google Scholar 

  420. Tobushi H., Hayashi S., Pieczyska E., Date K., Nishimura Y.: Three-way actuation of shape memory composite. Arch. Mech. 5–6, 443–457 (2011)

    Google Scholar 

  421. Tobushi H., Hayashi S., Sugimoto Y., Date K.: Performance of shape memory composite with SMA and SMP. Solid State Phenom. 154, 65–70 (2009)

    Article  Google Scholar 

  422. Tobushi H., Hayashi S., Sugimoto Y., Date K.: Fabrication and two-way deformation of shape memory composite with SMA and SMP. Mater. Sci. Forum 638–642, 2189–2194 (2010)

    Article  Google Scholar 

  423. Tobushi H., Pieczyska E., Ejiri Y., Sakuragi T.: Thermomechanical properties of shape-memory alloy and polymer and their composites. Mech. Adv. Mater. Struct. 16, 236–247 (2009)

    Article  Google Scholar 

  424. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Interdisciplinary Applied Mathematics: Mechanics and Materials. Springer, New York (2002)

  425. Triantafyllou G., Psarras G.C.: Probing the reverse martensitic transformation in constrained shape memory alloys via electrical resistance. J. Intell. Mater. Syst. Struct. 21, 975–981 (2010)

    Article  Google Scholar 

  426. Turner T.L., Buehrle R., Cano R., Fleming G.: Modeling, fabrication, and testing of a SMA hybrid composite jet engine chevron concept. J. Intell. Mater. Syst. Struct. 17, 483–497 (2006)

    Article  Google Scholar 

  427. Turner T.L., Patel H.D.: Analysis of SMA hybrid composite structures in MSC.Nastran and ABAQUS. J. Intell. Mater. Syst. Struct. 18, 435–447 (2007)

    Article  Google Scholar 

  428. Umezaki E.: Temperature distributions of SMA wires embedded in epoxy resin plates and heated by supplying electric current. J. Intell. Mater. Syst. Struct. 17, 1115–1120 (2006)

    Article  Google Scholar 

  429. Vaidyanathan R., Bourke M.A.M., Dunand D.C.: Phase fraction, texture and strain evolution in superplastic NiTi and NiTi-TiC composites investigated by neutron diffraction. Acta Metall. 47, 3353–3366 (1999)

    Google Scholar 

  430. Vaidyanathan R., Bourke M.A.M., Dunand D.C.: Stress-induced martensitic transformations in NiTi and NiTi-TiC composites investigated by neutron diffraction. Mater. Sci. Eng. A 273–275, 404–409 (1999)

    Article  Google Scholar 

  431. Vaidyanathan R., Bourke M.A.M., Dunand D.C.: An in situ neutron diffraction mechanical study of superplastic NiTi and NiTi–TiC composites. J. Phys. IV 112, 823–826 (2003)

    Google Scholar 

  432. Vaidyanathan R., Dunand D.C., Ramamurtny U.: Fatigue crack-growth in shape memory NiTi and NiTi-TiC composites. Mater. Sci. Eng. A 289, 208–216 (2000)

    Article  Google Scholar 

  433. Villanueva, A., Smith, C., Priya, S.: A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir. Biomim. 6 (2011). Art. no. 036004

  434. Villanueva A.A., Joshi K.B., Blottman J.B., Priya S.: A bio-inspired shape memory alloy composite (BISMAC) actuator. Smart Mater. Struct. 19, 025013 (2010)

    Article  Google Scholar 

  435. Wang Q., Cui C., Yan N.: Fabrication of a CuAlMn shape memory alloy by the sintering-dissolution process. Mater. Lett. 65, 2735–2738 (2011)

    Article  Google Scholar 

  436. Wang Q., Han F., Wu J., Hao G.: Damping behavior of porous CuAlMn shape memory alloy. Mater. Lett. 61, 2598–2600 (2007)

    Article  Google Scholar 

  437. Wang Q., Lu D., Cui C., Yan N., Wang Q.: Fabrication and internal friction behaviors of novel porous CuAlMn shape memory alloy filled with polystyrene. Mater. Lett. 92, 82–85 (2013)

    Article  Google Scholar 

  438. Wang Q.Z., Han F.S., Cui C.: Effects of macroscopic graphite particulates on the damping behavior of CuAlMn. J. Mater. Sci. 42, 5029–5035 (2007)

    Article  Google Scholar 

  439. Wang Q.Z., Han F.S., Wu J., Hao G.L.: Thermal stresses in a macroscopic graphite particulates reinforced CuAlMn shape memory alloy studied by internal friction. Mater. Sci. Eng. A 408, 247–254 (2005)

    Article  Google Scholar 

  440. Wang Q.Z., Lu D.M., Cui C.X., Liu W.J., Xu M., Yang J.: Effects of aging on the structure and damping behaviors of a novel porous CuAlMn shape memory alloy fabricated by sintering-dissolution method. Mater. Sci. Eng. A 615, 278–282 (2014)

    Article  Google Scholar 

  441. Wang S., Guo F.M., Jiang D.Q., Liu Y., Cui L.S.: In situ W-NiTi shape memory alloy composite of high radiopacity. Scr. Mater. 81, 4–7 (2014)

    Article  Google Scholar 

  442. Wang W., Lee J.Y., Rodrigue H., Song S.H., Chu W.S., Ahn S.H.: Locomotion of inchworm-inspired robot made of smart soft composite (ssc). Bioinspir. Biomim. 9, 046006 (2014)

    Article  Google Scholar 

  443. Wang X., Hu G.: Stress transfer for a SMA fiber pulled out from an elastic matrix and related bridging effect. Compos. Part A 36, 1142–1151 (2005)

    Article  Google Scholar 

  444. Wang Y., Zhou L., Wang Z., Huang H., Ye L.: Analysis of internal stresses induced by strain recovery in a single SMA fiber-matrix composite. Compos. Part B 42, 1135–1143 (2011)

    Article  Google Scholar 

  445. Wang Y., Zhou L., Wang Z., Huang H., Ye L.: Stress distributions in single shape memory alloy fiber composites. Mater. Des. 32, 3783–3789 (2011)

    Article  Google Scholar 

  446. Wang Z.X., Dutta I., Majumdar B.S.: Thermal cycle response of a lead-free solder reinforced with adaptive shape memory alloy. Mater. Sci. Eng. A 421, 133–142 (2006)

    Article  Google Scholar 

  447. Wang Z.X., Dutta I., Majumdar B.S.: Thermomechanical response of a lead-free solder reinforced with a shape memory alloy. Scr. Mater. 54, 627–632 (2006)

    Article  Google Scholar 

  448. Wei Z.G., Sandström R., Miyazaki S.: Shape memory materials and hybrid composites for smart systems: part II shape-memory hybrid composites. J. Mater. Sci. 33, 3763–3783 (1998)

    Article  Google Scholar 

  449. White S.R., Berman J.B.: Thermomechanical response of SMA composite beams with embedded nitinol wires in an epoxy matrix. J. Intell. Mater. Syst. Struct. 9, 391–400 (1998)

    Article  Google Scholar 

  450. Whitten, W., Hartl, D.: Iterative calibration of a shape memory alloy constitutive model from 1d and 2d experimental data using optimization methods. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, pp. 905804–905804 (2014)

  451. Wierschem, N., Andrawes, B.: Superelastic SMA-FRP composite reinforcement for concrete structures. Smart Mater. Struct. 19 (2010). Art. no. 025011

  452. Witherspoon C., Zheng P., Chmielus M., Vogel S.C., Dunand D.C., Müllner P.: Texture and training of magnetic shape memory foam. Acta Mater. 61, 2113–2120 (2013)

    Article  Google Scholar 

  453. Wu, R., Han, M.W., Lee, G.Y., Ahn, S.H.: Woven type smart soft composite beam with in-plane shape retention. Smart Mater. Struct. 22 (2013). Art. no. 125007

  454. Xie C.L., Hailat M., Wu X., Newaz G.: Development of short fiber-reinforced NiTi/Al6061 composite. J. Eng. Mater. Technol. 129, 69–76 (2007)

    Article  Google Scholar 

  455. Xiong J.Y., Li Y.C., Wang X.J., Hodgson P.D., Wen C.E.: Titanium-Nickel shape memory alloy foams for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 1, 269–273 (2008)

    Article  Google Scholar 

  456. Xiu Z., Laeng J., Sun X., Li Q., Hur S.K., Liu Y.: Phase formation of Al2O3/Ti(C, N)-NiTi composite. J. Alloys Compd. 458, 398–404 (2008)

    Article  Google Scholar 

  457. Xu J.L., Bao L.Z., Liu A.H., Jin X.J., Tong Y.X., Luo J.M., Zhong Z.C., Zheng Y.F.: Microstructure, mechanical properties and superplasticity of biomedical porous NiTi alloy prepared by microwave sintering. Mater. Sci. Eng. C 46, 387–393 (2015)

    Article  Google Scholar 

  458. Xu J.L., Jin X.F., Luo J.M., Zhong Z.C.: Fabrication and properties of porous NiTi alloys by microwave sintering for biomedical applications. Mater. Lett. 124, 110–112 (2014)

    Article  Google Scholar 

  459. Xuan H.C., Wang L.Y., Zheng Y.X., Cao Q.Q., Deng Y., Wang D.H., Du Y.W.: Large converse magnetoelectric effect in ferromagnetic shape memory alloy \({{\rm Ni}_{49} {\rm Fe}_{18} {\rm Ga}_{27} {\rm Co}_{6}}\) and \({{\rm Pb}({\rm Zr}_{0.52} {\rm Ti}_{0.48}){\rm O}_{3}}\) laminates. J. Alloys Compd. 519, 97–100 (2012)

    Article  Google Scholar 

  460. Yamada Y., Taya M., Watanabe R.: Strengthening of metal matrix composite by shape memory effect. Mater. Trans. JIM 34(3), 5083–5091 (1993)

    Article  Google Scholar 

  461. Yan B., Li G.: Mg alloy matrix composite reinforced with TiNi continuous fiber prepared by ball-milling/hot-pressing. Compos. Part A 36, 1590–1594 (2005)

    Article  MathSciNet  Google Scholar 

  462. Yang R., Cui L., Zheng Y.: Synthesis of TiC/NiTi composite powders in molten salt and their sintering. J. Mater. Sci. 43A, 98–101 (2008)

    Article  Google Scholar 

  463. Yang, S., Dui, G., Ma, B.: Temperature variation of a NiTi wire considering the effects of test machine grips. Acta Mech. (2015). doi:10.1007/s00707-015-1322-6

  464. Yen F.C., Hwang K.S., Wu S.K.: Fabrication of porous Ti-rich Ti51Ni49 by evaporating NaCl space holder. Metall. Mater. Trans. A 45, 2626–2635 (2014). doi:10.1007/s11661-014-2196-2

    Article  Google Scholar 

  465. Yongsheng R., Shulian Y., Xiaohui W.: Structural modeling of SMA fiber hybrid active thin-walled composite beams. Compos. Struct. 91, 120–130 (2009)

    Article  Google Scholar 

  466. Yoon H.J., Costantini D.M., Limberger H.G., Salathé R.P., Kim C.G., Michaud V.: In situ strain and temperature monitoring of adaptive composite materials. J. Intell. Mater. Syst. Struct. 17, 1059–1067 (2006)

    Article  Google Scholar 

  467. Young M.L., DeFouw J.D., Frenzel J., Dunand D.C.: Cast-replicated NiTiCu foams with superplastic properties. Metall. Mater. Trans. A 43A, 2939–2944 (2012)

    Article  Google Scholar 

  468. Zafar A., Andrawes B.: Fabrication and cyclic behavior of highly ductile superelastic shape memory composites. J. Mater. Civ. Eng. 26, 622–632 (2012). doi:10.1061/(ASCE)MT.1943-5533.0000797

    Article  Google Scholar 

  469. Zafar, A., Andrawes, B.: Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars. Smart Mater. Struct. 21 (2012). Art. no. 025013

  470. Zafar A., Andrawes B.: Experimental flexural behavior of SMA-FRP reinforced concrete beam. Front. Struct. Civ. Eng. 7, 341–355 (2013). doi:10.1007/s11709-013-0221-y

    Article  Google Scholar 

  471. Zakharov, D., Lebedev, G., Irzhak, A., Afonina, V., Mashirov, A., Kalashnikov, V., Koledov, V., Shelyakov, A., Podgorny, D., Tabachkova, N., Shavrov, V.: Submicron-sized actuators based on enhanced shape memory composite materials fabricated by FIB-CVD. Smart Mater. Struct. 21 (2012). Art. no. 052001

  472. Zeng, M., Or, S.W., Chan, H.L.W.: Effect of phase transformation on the converse magnetoelectric properties of a heterostructure of Ni49.2Mn29.6Ga21.2 and 0.7PbMg1/3Nb2/3O3-0.3PbTiO3 crystals. Appl. Phys. Lett. 96, 182503 (2010). doi:10.1063/1.3427388

  473. Zeng M., Or S.W., Chan H.L.W.: Large magnetoelectric effect from mechanically mediated magnetic field-induced strain effect in Ni-Mn-Ga single crystal and piezoelectric effect in PVDF polymer. J. Alloys Compd. 490, L5–L8 (2010)

    Article  Google Scholar 

  474. Zhang R.X., Ni Q.Q., Mauda A., Yamamura T., Iwamoto M.: Vibration characteristics of laminated composite plates with embedded shape memory alloys. Compos. Struct. 74, 389–398 (2006)

    Article  Google Scholar 

  475. Zhang R.X., Ni Q.Q., Natsuki T., Iwamoto M.: Mechanical properties of composites filled with SMA particles and short fibers. Compos. Struct. 79, 90–96 (2007)

    Article  Google Scholar 

  476. Zhang X.X., Hou H.W., Wie W.T., Wei L.G.: High damping capacity in porous NiTi alloy with bimodal pore architecture. J. Alloys Compd. 550, 297–301 (2013)

    Article  Google Scholar 

  477. Zhang X.X., Witherspoon C., Müllner P., Dunand D.C.: Effect of pore architecture on magnetic-field-induced strain in polycrystalline Ni-Mn-Ga. Acta Mater. 59, 2229–2239 (2011)

    Article  Google Scholar 

  478. Zhang Y., Li D., Zhang X.: Gradient porosity and large pore size NiTi shape memory alloys. Scr. Mater. 57, 1020–1023 (2007)

    Article  Google Scholar 

  479. Zhang Y., Zhao Y.P.: A discussion on modeling shape memory alloy embedded in a composite laminate as axial force and elastic foundation. Mater. Des. 28, 1016–1020 (2007)

    Article  Google Scholar 

  480. Zhang Y., Zhao Y.P.: A study of composite beam with shape memory alloy arbitrarily embedded under thermal and mechanical loadings. Mater. Des. 28, 1096–1115 (2007)

    Article  Google Scholar 

  481. Zhao L.M., Feng X., Mi X.J., Li Y.F., Xie H.F., Yin X.Q.: The interfacial strength improvement of SMA composite using ZnO with electrochemical deposition method. Appl. Surf. Sci. 320, 670–673 (2014)

    Article  Google Scholar 

  482. Zhao X., Sun H., Lan L., Huang J., Zhang H., Wang Y.: Pore structures of hit-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders. Mater. Lett. 63, 2402–2404 (2009)

    Article  Google Scholar 

  483. Zhao Y.M.T., Kang Y.A.K.: Compression behavior of porous NiTi shape memory alloy. Acta Mater. 53, 337–343 (2005)

    Article  Google Scholar 

  484. Zheng P., Kucza N.J., Wang Z., Müllner P., Dunand D.C.: Effect of directional solidification on texture and magnetic-field-induced strain in Ni-Mn-Ga foams with coarse grains. Acta Mater. 86, 95–101 (2015)

    Article  Google Scholar 

  485. Zheng Y., Cui L., Schrooten J.: Thermal cycling behaviors of a NiTiCu wire reinforced Kevlar/epoxy composite. Mater. Lett. 59, 3287–3290 (2005)

    Article  Google Scholar 

  486. Zheng Y.J., Cui L.S., Schrooten J.: Basic design guidelines for SMA/epoxy smart composites. Mater. Sci. Eng. A 390, 139–143 (2005)

    Article  Google Scholar 

  487. Zheng Y.J., Schrooten J., Cui L.: Thermomechanical properties of TiNiCu12 wire reinforced Kevlar/epoxy composites. Intermetallics 13, 305–308 (2005)

    Article  Google Scholar 

  488. Zhou G., Lloyd P.: Design, manufacture and evaluation of bending behavior of composite beams embedded with SMA wires. Compos. Sci. Technol. 69, 2034–2041 (2009)

    Article  Google Scholar 

  489. Zhu Y., Dui G.: Effect of fiber shape on mechanical behavior of composite with elastoplastic matrix and SMA reinforcement. J. Mech. Behav. Biomed. Mater. 2, 454–459 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris C. Lagoudas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lester, B.T., Baxevanis, T., Chemisky, Y. et al. Review and perspectives: shape memory alloy composite systems. Acta Mech 226, 3907–3960 (2015). https://doi.org/10.1007/s00707-015-1433-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1433-0

Keywords

Navigation