Skip to main content
Log in

On rotation deformation zones for finite-strain Cosserat plasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this article, a numerical solution method for the finite-strain rate-independent Cosserat theory of crystal plasticity is developed. Based on a time-incremental minimization problem of the mechanical energy, a limited-memory Broyden–Fletcher–Goldfarb quasi-Newton method applied to a finite-difference discretization is proposed. First benchmark tests study the convergence to an analytic solution. Further simulations focus on the investigation of rotation localization zones, the bending of a rod, and a torsion experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aero E.L., Bulygin A.N., Kuvshinskii E.V.: Asymmetric hydrodynamics. Prikl. Mat. Mekh. 29, 297–308 (1965)

    Google Scholar 

  2. Aero E.L., Kuvshinskii E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys. Solid State 2, 1272–1281 (1961)

    Google Scholar 

  3. Allen S.J., de Silva C.N., Kline K.A.: Theory of simple deformable directed fluids. Phys. Fluids 12, 2551–2555 (1967)

    Article  Google Scholar 

  4. Altenbach H., Eremeyev V.A.: Generalized Continua from the Theory to Engineering Applications. Springer, CISM, New York (2013)

    Book  MATH  Google Scholar 

  5. Blesgen, T.: Deformation patterning in Cosserat plasticity. Model. Simul. Mater. Sci. Eng. 21, (2013). doi:10.1088/0965-0393/21/3/035001

  6. Blesgen T.: Deformation patterning in three-dimensional large-strain Cosserat plasticity. Mech. Res. Commun. 62(C), 37–43 (2014). doi:10.1016/j.mechrescom.2014.08.007

  7. Blesgen T., Luckhaus S.: The dynamics of transition layers in solids with discontinuous chemical potentials. Math. Methods Appl. Sci. 29, 525–536 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Capriz G.: Continua with Microstructure. Springer, New York (1989)

    Book  MATH  Google Scholar 

  9. Capriz, G., Giovine, P., Mariano P.M. (eds.): Mathematical models of granular matter, Lecture notes in Mathematics, Springer, New York (2008)

  10. Conti, S., Ortiz, M.: Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176, 103–147 (2005)

  11. Cosserat, E., Cosserat, F.: Théorie des corps déformables, Librairie Scientifique A. Hermann et Fils, Paris (1909), (English version: Theory of deformable bodies, NASA TT F-11 561 (1968))

  12. Crumbach M., Goerdeler M., Gottstein G.: Modelling of recrystallisation textures in aluminium alloys: I Model set-up and integration. Acta Mater. 54, 3275–3289 (2006)

    Article  Google Scholar 

  13. de Borst R., Sluys L.J.: Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput. Methods Appl. Mech. Eng. 90, 805–827 (1991)

    Article  Google Scholar 

  14. de Silva C.N., Tasi P.J.: A general theory of directed surfaces. Acta Mech. 18, 89–101 (1973)

    Article  MathSciNet  Google Scholar 

  15. Diebels S.: A macroscopic description of the quasi-static behavior of granular materials based on the theory of porous media. Granul. Matter 2, 143–152 (2000)

    Article  Google Scholar 

  16. Dongarra J.J., Bunch J.R., Moler C.B., Stewart G.W.: LINPACK Users’ Guide. SIAM, Philadelphia (1979)

    Book  Google Scholar 

  17. Eremeyev V.A., Lebedev L.P., Altenbach H.: Foundations of Micropolar Mechanics. Springer, New York (2013)

    Book  MATH  Google Scholar 

  18. Ericksen J.L., Truesdell C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1, 295–323 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  19. Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MATH  MathSciNet  Google Scholar 

  20. Eringen A.C.: Theory of thermomicrofluids. J. Math. Anal. Appl. 38, 480–496 (1972)

    Article  MATH  Google Scholar 

  21. Eringen A.C.: Theories of nonlocal plasticity. Int. J. Eng. Sci. 21, 741–751 (1983)

    Article  MATH  Google Scholar 

  22. Eringen A.C., Kafadar C.B.: Polar field theories. In: Eringen, A.C. (ed.) Continuum physics, polar and nonlocal field theories IV, pp. 1–73. Academic press, New York (1976)

    Google Scholar 

  23. Eringen A.C.: A unified continuum theory of electrodynamics of liquid crystals. Int. J. Eng. Sci. 35, 1137–1157 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Evans L.C., Soner H.M., Souganidis P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Forest S., Barbe F., Cailletaud G.: Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials. Int. J. Solids Struct. 37, 7105–7126 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Forest S., Sievert R.: Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  MATH  Google Scholar 

  27. Gomez J.D.: Numerical treatment of Cosserat based rate independent strain gradient plasticity theories. Ing. Cienc. 4, 99–128 (2008)

    Google Scholar 

  28. Gourgiotis P.A., Georgiadis H.G.: Distributed dislocation approach for cracks in couple-stress elasticity: Shear Modes. Int. J. Fract. 147, 83–102 (2007)

    Article  MATH  Google Scholar 

  29. Gammenoudis P., Tsakmakis C.: Predictions of microtorsional experiments by micropolar plasticity. Proc. R. Soc. A 461, 189–205 (2005)

    Article  Google Scholar 

  30. Green A.E., Naghdi P.M., Rivlin R.S.: Directors and multipolar displacements in continuum mechanics. Int. J. Eng. Sci. 2, 611–620 (1965)

    Article  MATH  Google Scholar 

  31. Günther W.: Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweig. Wiss. Ges. Gött. 10, 196–213 (1958)

    Google Scholar 

  32. Han W., Reddy D.: Plasticity: mathematical theory and numerical analysis. Springer, New York (1999)

    MATH  Google Scholar 

  33. Harris D., Grekova E.F.: A hyperbolic well-posed model for the flow of granular materials. J. Eng. Math. 52, 107–135 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Hill R.: The mathematical theory of plasticity. Oxford University Press, Oxford UK (1998)

    MATH  Google Scholar 

  35. Hirschberger, C.B.: A treatise on micromorphic continua. Theory, Homogenization, Computation. PhD thesis, University of Kaiserslautern (2008)

  36. Khoei A.R., Yadegari S., Biabanaki S.O.R.: 3d finite element modeling of shear band localization via the micro-polar Cosserat continuum theory. Comput. Mater. Sci. 49, 720–733 (2010)

    Article  Google Scholar 

  37. Kotera H., Sawada M., Shima S.: Cosserat continuum theory to simulate microscopic rotation of magnetic powder in applied magnetic field. Int. J. Mech. Sci. 42, 129–145 (2000)

    Article  MATH  Google Scholar 

  38. Lubliner J.: Plasticity Theory. Dover publications, New York (2008)

    MATH  Google Scholar 

  39. Menzel A., Ekh M., Runesson K., Steinmann P.: A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage. Int. J. Plast. 21, 397–434 (2005)

    Article  MATH  Google Scholar 

  40. Maugin G.A.: Mechanics of Generalized Continua—One Hundred Years After the Cosserats. Springer publishing, New York (2010)

    MATH  Google Scholar 

  41. Miehe C.: A constitutive frame of elastoplasticity at large strains based on the notion of a plastic metric. Int. J. Solids Struct. 35(30), 3859–3897 (1998)

    Article  MATH  Google Scholar 

  42. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  43. Moré J., Thuente D.J.: Line search algorithms with guaranteed sufficient decrease. ACM Trans. Math. Softw. 20, 286–307 (2004)

    Article  Google Scholar 

  44. Mugnai L., Luckhaus S.: On a mesoscopic many-body Hamiltonian describing elastic shears and dislocations. Contin. Mech. Thermodyn. 22, 251–290 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Neff P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  46. Neff P., Chelminski K.: Infinitesimal elastic-plastic Cosserat micropolar theory: modelling and global existence in the rate-independent case. Proc. R. Soc. Edinb. A 135, 1017–1039 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Neff P., Chelminski K., Müller W., Müller W.: A numerical solution method for an infinitesimal elasto-plastic Cosserat model. Math. Models Methods Appl. Sci. 17, 1211–1239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Nocedal J.: On the limited memory method for large scale optimization. Math. Programm. B 45, 503–528 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  49. Oda, M., Iwashita, I. (eds.): Mechanics of Granular Materials: An Introduction. Taylor & Francis publishing, London (1999)

    Google Scholar 

  50. Ortiz M., Repetto E.: Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47, 397–462 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  51. Papanicolopulos S.-A., Zervos A.: A three-dimensional C 1 finite element for gradient elasticity. Int. J. Numer. Methods Eng. 77, 1396–1415 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  52. Protter M.H., Weinberger H.F.: Maximum Principles in Differential Equations. Springer, New York (1999)

    Google Scholar 

  53. Reina C., Conti S.: Kinematic description of crystal plasticity in the finite kinematic framework: A micromechanical understanding of F = F e F p. J. Mech. Phys. Solids 67, 40–61 (2014)

    Article  MathSciNet  Google Scholar 

  54. Rubin M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

  55. Rubin M.B.: Numerical solution of axisymmetric nonlinear elastic problems including shells using the theory of a Cosserat point. Comput. Mech. 36(4), 266–288 (2005)

    Article  MATH  Google Scholar 

  56. Simo J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition, Part I: Continuum formulation. Comp. Meth. Appl. Mech. Eng. 66, 199–219 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  57. Simo J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition, Part II: Computational aspects. Comp. Meth. Appl. Mech. Eng. 68, 1–31 (1988)

    Article  MATH  Google Scholar 

  58. Slabaugh, G.: Computing Euler angles from a rotation matrix. Technical report (1999). Available online at http://www.soi.city.ac.uk/~sbbh653/publications/euler.pdf

  59. Stojanovic, R. (ed.): Mechanics of Polar Continua, Theory and Applications. Springer, New York (1969)

    Google Scholar 

  60. Toupin R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 17, 85–112 (1962)

    MathSciNet  Google Scholar 

  61. Vardoulakis I., Sulem J.: Bifurcation analysis in geomechanics. Spon Press, London (1995)

    Google Scholar 

  62. Walsh S.D.C., Tordesillas A.: A thermomechanical approach to the development of micropolar constitutive models of granular media. Acta Mech. 167, 145–169 (2004)

    Article  MATH  Google Scholar 

  63. Weber G., Anand L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79, 173–202 (1990)

    Article  MATH  Google Scholar 

  64. Yeremeyev V.A., Zubov L.M.: The theory of elastic and viscoelastic micropolar liquids. J. Appl. Math. Mech. 63, 755–767 (1999)

    Article  MathSciNet  Google Scholar 

  65. Zeghadi A., Forest S., Gourgues A.-F., Bouaziz O.: Cosserat continuum modelling of grain size effects in metal polycrystals. Proc. Appl. Math. Mech. 5, 79–82 (2005)

    Article  Google Scholar 

  66. Zhang H.W., Wang H., Chen B.S., Xie Z.Q.: Analysis of Cosserat materials with Voronoi cell finite element method and parametric variational principle. Comput. Methods Appl. Mech. Eng. 197, 741–755 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  67. Zhilin P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Blesgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blesgen, T. On rotation deformation zones for finite-strain Cosserat plasticity. Acta Mech 226, 2421–2434 (2015). https://doi.org/10.1007/s00707-015-1326-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1326-2

Keywords

Navigation