Skip to main content
Log in

Two-dimensional piezothermoelastic analysis of a smart FGM hollow sphere

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A two-dimensional analytical piezothermoelastic solution for a functionally graded material (FGM) hollow sphere with integrated piezoelectric layers as a sensor and actuator subjected to non-axisymmetric loads is carried out. A feedback gain control algorithm is used for the active control of stress and displacement of an FGM hollow sphere. The material properties of the FGM layer are assumed to be graded in the radial direction according to a power law function. Governing differential equations are developed in terms of the components of the displacement field, the electric potential, and the temperature of each layer of the smart FGM hollow sphere. These equations are solved analytically using the Legendre polynomials and the system of Euler differential equations. The effects of grading index of material properties and feedback gain on the mechanical–electrical responses are demonstrated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding H.J., Chen W.Q.: Three Dimensional Problems of Piezoelasticity. Nova Science Publishers, New York (2001)

    Google Scholar 

  2. Ootao Y., Tanigawa Y.: Control of transient thermoelastic displacement of a two-layered composite plate constructed of isotropic elastic and piezoelectric layers due to nonuniform heating. Arch. Appl. Mech. 71, 207–220 (2001)

    Article  MATH  Google Scholar 

  3. Ashida F., Tauchert T.R.: A general plane-stress solution in cylindrical coordinates for a piezothermoelastic plate. Int. J. Solids Struct. 38, 4969–4985 (2001)

    Article  MATH  Google Scholar 

  4. Qin Q.H., Mai Y.W.: Thermoelectroelastic Green’s function and its application for bimaterial of piezoelectric materials. Arch. Appl. Mech. 68, 433–444 (1998)

    Article  MATH  Google Scholar 

  5. Shul’ga N.A.: Radial electro-elastic vibrations of a hollow piezoceramic sphere. J. Appl. Mech. 22, 731–734 (1990)

    Google Scholar 

  6. Ding H.J., Wang H.M., Chen W.Q.: Analytical solution for a non-homogeneous isotropic piezoelectric hollow sphere. Arch. Appl. Mech. 73, 49–62 (2003)

    Article  MATH  Google Scholar 

  7. Chen W.Q., Shioya T.: Piezothermoelastic behavior of a pyroelectric spherical shell. J. Therm. Stress 24, 105–120 (2001)

    Article  Google Scholar 

  8. Chen W.Q., Lu Y., Ye G.R. et al.: 3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loadings. Arch. Appl. Mech. 72, 39–51 (2002)

    Article  MATH  Google Scholar 

  9. Dai H.L., Wang X.: Thermo-electro-elastic transient responses in piezoelectric hollow structures. Int. J. Solids Struct. 42, 1151–1171 (2005)

    Article  MATH  Google Scholar 

  10. Ootao Y., Tanigawa Y.: Transient piezothermoelastic analysis for a functionally graded thermopiezo electric hollow sphere. Compos. Struct. 81(4), 540–549 (2007)

    Article  Google Scholar 

  11. Wang H.M., Ding H.J., Chen Y.M.: Transient responses of a multilayered spherically isotropic piezoelectric hollow sphere. Arch. Appl. Mech. 74, 581–599 (2005)

    Article  MATH  Google Scholar 

  12. Wang H.M., Xu Z.X.: Effect of material inhomogeneity on electromechanical behaviors of functionally graded piezoelectric spherical structures. Comput. Mater. Sci. 48, 440–445 (2010)

    Article  Google Scholar 

  13. Chen W.Q., Ding H.J., Xu R.Q.: Three-dimensional free vibration analysis of a fluid-filled piezoceramic hollow sphere. Comput. Struct. 79, 653–663 (2001)

    Article  Google Scholar 

  14. Chen W.Q., Ding H.J., Xu R.Q.: Three dimensional static analysis of multi-layered piezo electric hollow sphere via the state space method. Int. J. Solids Struct. 38, 4921–4936 (2001)

    Article  MATH  Google Scholar 

  15. Liu C.B., Bian Z.G., Chen W.Q., Lü C.F.: Three-dimensional pyroelectric analysis of a functionally graded piezoelectric hollow sphere. J. Therm. Stress. 35, 499–516 (2012)

    Article  Google Scholar 

  16. Jabbari M., Karampour S., Eslami M.R.: Steady state thermal and mechanical stresses of a poro-piezo-FGM hollow sphere. Meccanica 48, 699–719 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eslami M.R., Babaei M.H., Poultangari R.: Thermal and mechanical stresses in a functionally graded thick sphere. Int. J. Press. Vessel Pip. 82(7), 452–457 (2005)

    Article  Google Scholar 

  18. Obata Y., Noda N.: Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally gradient material. J. Therm. Stress. 17(3), 471–487 (1994)

    Article  Google Scholar 

  19. Jabbari M., Sohrabpour S., Eslami M.R.: Mechanical and thermal stresses in functionally graded hollow cylinder due to radially symmetric loads. Int. J. Press. Vessel Pip. 79, 493–497 (2002)

    Article  Google Scholar 

  20. Jabbari M., Sohrabpour S., Eslami M.R.: General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads. ASME J. Appl. Mech. 70, 111–118 (2003)

    Article  MATH  Google Scholar 

  21. Poultangari R., Jabbari M., Eslami M.R.: Functionally graded hollow spheres under non-axisymmetric thermo-mechanical loads. Int. J. Press. Vessels Pip. 85(5), 295–305 (2008)

    Article  Google Scholar 

  22. Ootao Y., Tanigawa Y.: Three-dimensional transient piezothermoelasticity in functionally graded rectangular plate bonded to a piezoelectric plate. Int. J. Solids Struct. 37, 4377–4401 (2000)

    Article  MATH  Google Scholar 

  23. Reddy J.N., Cheng Z.Q.: Three-dimensional solutions of smart functionally graded plates. J. Appl. Mech. 68, 234–241 (2001)

    Article  MATH  Google Scholar 

  24. Wang B.L., Noda N.: Design of smart functionally graded thermo-piezoelectric composite structure. Smart Mater. Struct. 10, 189–193 (2001)

    Article  Google Scholar 

  25. Huang X.L., Shen H.S.: Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. J. Sound Vib. 289, 25–53 (2006)

    Article  Google Scholar 

  26. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells, Conservative. CRC Press, New York (2004)

    Google Scholar 

  27. Liew K.M., He X.Q., Ng T.Y. et al.: Active control of FGM plates subjected to a temperature gradient: Modelling via finite element method based on FSDT. Int. J. Numer. Methods Eng. 52, 1253–1271 (2001)

    Article  MATH  Google Scholar 

  28. Liew K.M., He X.Q., Ng T.Y. et al.: Finite element piezothermoelasticity analysis and the active control of FGM plates with integrated piezoelectric sensors and actuators. Comput. Mech. 31, 350–358 (2003)

    MATH  Google Scholar 

  29. Liew K.M., He X.Q., Ng T.Y. et al.: Active control of FGM shells subjected to a temperature gradient via piezoelectric sensor/actuator patches. Int. J. Numer. Methods Eng. 55, 653–668 (2002)

    Article  MATH  Google Scholar 

  30. Sabzikar Boroujerdy M., Eslami M.R.: Nonlinear axisymmetric thermomechanical response of piezo-FGM shallow spherical shells. Arch. Appl. Mech. 83, 1681–1693 (2013)

    Article  MATH  Google Scholar 

  31. Ahmad G., Manouchehr S., Saeed F.: Deflection control of functionally graded material beams with bonded piezoelectric sensors and actuators. Mater. Sci. Eng. A 498, 110–114 (2008)

    Article  Google Scholar 

  32. Xiao L.H., Shen H.S.: Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. J. Sound Vib. 289, 25–53 (2006)

    Article  Google Scholar 

  33. He X.Q., Hg Y.Y., Sivashanker S.: Active control of FGM plates with integrated piezoelectric sensors and actuators. Int. J. Solids Struct. 38, 1641–1655 (2001)

    Article  MATH  Google Scholar 

  34. Korn G.A., Korn T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Barati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barati, A.R., Jabbari, M. Two-dimensional piezothermoelastic analysis of a smart FGM hollow sphere. Acta Mech 226, 2195–2224 (2015). https://doi.org/10.1007/s00707-015-1304-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1304-8

Keywords

Navigation