Skip to main content
Log in

Undular hydraulic jumps arising in non-developed turbulent flows

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Turbulent plane flow over a bottom of constant slope is considered for very large Reynolds numbers, very small slopes of the bottom, and Froude numbers close to the critical value 1. In contrast to a previous work (Grillhofer and Schneider, Phys Fluids 15:730–735, 2003), it is not assumed that the flow far upstream is fully developed. The first-order perturbation equations contain unknown functions that are determined from a solvability condition of the second-order equations. Without making use of turbulence modeling or empirical parameters, a third-order ordinary differential equation is obtained for the shape of the free surface. Slow changes of amplitudes and wave lengths, respectively, associated with a small damping parameter are described by a multiple-scales solution, which also reveals the source of peculiarities of numerical solutions. A universal diagram of solutions and a universal map of the initial conditions that lead to undular jumps are given. Both numerical and multiple-scales solutions are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chow V.T.: Open-Channel Hydraulics. McGraw-Hill, New York (1959)

    Google Scholar 

  2. Henderson F.: Open Channel Flow. Macmillan, New York (1966)

    Google Scholar 

  3. Van Dyke M.: An Album of Fluid Motion. 4th printing. Parabolic Press, Stanford (1988)

    Google Scholar 

  4. Ohtsu I., Yasuda Y., Gotoh H.: Flow conditions of undular hydraulic jumps in horizontal rectangular channels. J. Hydraul. Eng. 129, 948–955 (2003)

    Article  Google Scholar 

  5. Kaufmann K.: Hydromechanik II. Springer, Berlin (1934)

    Google Scholar 

  6. Johnson R.S.: Shallow water waves on a viscous fluid—the undular bore. Phys. Fluids 15, 1693–1699 (1972)

    Article  MATH  Google Scholar 

  7. Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  8. Andersen V.M.: Undular hydraulic jump. J. Hydraul. Div. 104, 1185–1188 (1978)

    Google Scholar 

  9. Hager W.H., Hutter K.: On pseudo-uniform flow in open channel hydraulics. Acta Mech. 53, 183–200 (1984)

    Article  Google Scholar 

  10. Montes J.S., Chanson H.: Characteristics of undular hydraulic jumps: experiments and analysis. ASCE J. Hydraul. Eng. 124, 192–205 (1998)

    Article  Google Scholar 

  11. Caputo J.-G., Stepanyants Y.A.: Bore formation, evolution and disintegration into solitons in shallow inhomogeneous channels. Nonlin. Process. Geophys. 10, 407–424 (2003)

    Article  Google Scholar 

  12. El G.A., Grimshaw R.H.J., Kamchatkov A.M.: Analytic model for a weakly dissipative shallow-water undular bore. Chaos 15, 037102 (2004)

    Article  Google Scholar 

  13. El G.A., Grimshaw R.H.J., Smyth N.F.: Unsteady undular bores in fully nonlinear shallow-water theory. Phys. Fluids 18, 027104-1–027104-17 (2006)

    Article  MathSciNet  Google Scholar 

  14. El G.A., Grimshaw R.H.J., Kamchatkov A.M.: Evolution of solitary waves and undular bores in shallow-water flows over a gradual slope with bottom friction. J. Fluid Mech. 585, 213–244 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abd-el-Malek M.B., Helal M.M.: Group method solutions of the generalized forms of Burgers, Burgers–KdV and KdV equations with time-dependent variable coefficients. Acta Mech. 221, 281–296 (2011)

    Article  MATH  Google Scholar 

  16. Grimshaw, R.: Korteweg de-Vries Equation. In: Nonlinear Waves in Fluids: Recent Advances and Modern Applications. CISM Courses and Lectures No. 483, pp. 1–28. Springer (2005)

  17. Grillhofer W., Schneider W.: The undular hydraulic jump in turbulent open channel flow at large Reynolds numbers. Phys. Fluids 15, 730–735 (2003)

    Article  Google Scholar 

  18. Grimshaw R.: Internal solitary waves in a variable medium. GAMM-Mitteilungen 30/1, 96–109 (2007)

    Article  MathSciNet  Google Scholar 

  19. Steinrück H., Schneider W., Grillhofer W.: A multiple scales analysis of the undular hydraulic jump in turbulent open channel flow. Fluid Dyn. Res. 33, 41–55 (2003)

    Article  MATH  Google Scholar 

  20. Steinrück H.: Multiple scales analysis of the steady-state Korteweg–de Vries equation perturbed by a damping term. ZAMM 85, 114–121 (2005). doi:10.1002/zamm.200310162

    Article  MATH  Google Scholar 

  21. Steinrück, H.: Multiple scales analysis of the turbulent undular hydraulic jump. In: Steinrück, H. (eds.) Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances. CISM Courses and Lectures No. 523, pp. 197–219 (2010)

  22. Schneider W., Jurisits R., Bae Y.S.: An asymptotic iteration method for the numerical analysis of near-critical free-surface flows. Int. J. Heat Fluid Flow 31, 1119–1124 (2010)

    Article  Google Scholar 

  23. Ohtsu I., Yasuda Y., Gotoh H., Iahr M.: Hydraulic condition for undular-jump formations. J. Hydraul. Res. 39, 203–209 (2001)

    Article  Google Scholar 

  24. Gotoh, H., Yasuda, Y., Ohtsu, I.: Effect of channel slope on flow characteristics of undular hydraulic jumps. In: Brebbia, C.A., do Carmo, J.S.A. (eds.) River Basin Management III, 3rd International Conference on River Basin Management, Bologna 2005, WIT Transactions on Ecology and the Environment, pp. 33–42. WIT Press, Southampton (2005)

  25. Schneider, W.: Near-critical free-surface flows. In: Proceedings of the 2nd Shanghai International Symposium on Nonlinear Science and Application (Shanghai NSA’05), Section 8.6 Free and Moving Boundary Problems (2005)

  26. Jurisits, R., Schneider, W., Bae, Y.S.: The undular hydraulic jump—analytical and numerical investigations of the free boundary value problem. In: Proceedings of the 3rd Shanghai International Symposium on Nonlinear Science and Application (Shanghai NSA’07), pp. 90–91. Fudan University, Shanghai (2007)

  27. Jurisits, R., Schneider, W., Bae, Y.S.: A multiple-scales solution of the undular hydraulic jump problem. Proc. Appl. Math. Mech. (PAMM) 7, 4120007–4120008 (2007). doi:10.1002/pamm.200700755. http://www3.interscience.wiley.com/cgi-bin/fulltext/121560064/PDFSTART

  28. Jurisits, R.: Wellige Wassersprünge bei nicht voll ausgebildeter turbulenter Zuströmung. Dissertation, TU Wien (2012)

  29. Gersten K., Herwig H.: Strömungsmechanik. Grundlagen der Impuls-, Wärme- und Stoffübertragung aus asymptotischer Sicht. Vieweg, Braunschweig (1992)

    Google Scholar 

  30. Kluwick, A. (ed.) Recent Advances in Boundary Layer Theory. CISM Courses and Lectures No. 390, Springer, Wien

  31. Schlichting H., Gersten K.: Boundary Layer Theory. Springer, Berlin (2000)

    MATH  Google Scholar 

  32. Nezu I., Rodi W.: Open-channel flow measurements with a laser Doppler anemometer. ASCE J. Hydraul. Eng. 112, 335–355 (1986)

    Article  Google Scholar 

  33. Lennon J.M., Hill D.F.: Particle image velocity measurements of undular and hydraulic jumps. ASCE J. Hydraul. Eng. 132, 1283–1294 (2006)

    Article  Google Scholar 

  34. Gad-el-Hak M., Buschmann M.H.: Turbulent boundary layers: is the wall falling or merely wobbling?. Acta Mech. 218, 309–318 (2011)

    Article  MATH  Google Scholar 

  35. Komori S., Nagaosa R., Murakami Y., Chiba S., Ishii K., Kuwahara K.: Direct numerical simulation of three-dimensional open-channel flow with zero-shear gas-liquid interface. Phys. Fluids A 5, 115–125 (1993)

    Article  MATH  Google Scholar 

  36. Handler R.A., Swean T.F. Jr, Leighton R.I., Swearingen J.D.: Length scales and the energy balance for turbulence near a free surface. AIAA J. 31, 1998–2007 (1993)

    Article  MATH  Google Scholar 

  37. Brocchini, M., Peregrine, D.H.: The modelling of a spilling breaker: strong turbulence at a free surface. In: Proceedings of the International Conference Coastal Engineering, pp. 72–85. ASCE (1998)

  38. Svendsen I.A., Veeramony J., Bakunin J., Kirby J.T.: The flow in weak turbulent hydraulic jumps. J. Fluid Mech. 418, 25–57 (2000)

    Article  MATH  Google Scholar 

  39. Grillhofer, W.: Der wellige Wassersprung in einer turbulenten Kanalströmung mit freier Oberfläche. Dissertation, Technische Universität Wien (2002)

  40. Stoker J.J.: Water Waves. Interscience, New York (1957)

    MATH  Google Scholar 

  41. White F.: Fluid Mechanics. McGraw-Hill, New York (2009)

    Google Scholar 

  42. Chanson H., Montes J.S.: Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. Hydraul. Eng. 121, 129–144 (1995)

    Article  Google Scholar 

  43. Reinauer R., Hager W.: Non-breaking undular hydraulic jump. J. Hydraul. Res. 33, 683–698 (1995)

    Article  Google Scholar 

  44. Castro-Orgaz, O., Chanson, H.: Near-critical free-surface flows: real fluid flow analysis. Environ. Fluid Mech. doi:10.1007/s10652-010-9192-x (2010)

  45. Dias F., Vanden-Broek J.-M.: Generalised critical free-surface flows. J. Eng. Math. 42, 291–301 (2002)

    Article  MATH  Google Scholar 

  46. Dias F., Vanden-Broek J.-M.: Trapped waves between submerged obstacles. J. Fluid Mech. 509, 93–102 (2004)

    Article  MathSciNet  Google Scholar 

  47. Binder B.J., Vanden-Broek J.-M., Dias F.: Forced solitary waves and fronts past submerged obstacles. Chaos 15, 037106 (2005)

    Article  MathSciNet  Google Scholar 

  48. Chardard F., Dias F.: Stability of some stationary solutions to the forced KdV equation with one or two bumps. J. Eng. Math. 70, 175–189 (2011)

    Article  MathSciNet  Google Scholar 

  49. Van Dyke M.: Perturbation Methods in Fluid Mechanics. Annotated Ed. Parabolic Press, Stanford (1975)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Schneider.

Additional information

Dedicated to Professor Hans Irschik on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurisits, R., Schneider, W. Undular hydraulic jumps arising in non-developed turbulent flows. Acta Mech 223, 1723–1738 (2012). https://doi.org/10.1007/s00707-012-0666-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0666-4

Keywords

Navigation