Skip to main content
Log in

On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The aim of the present work is to derive the representation of a Galerkin-type solution in the linear theory of generalized thermoelasticity with three phase-lags, recently developed by Roychoudhuri (2007). Firstly, the representation of a Galerkin-type solution of equations of motion is obtained in the form of a theorem. Then, the representation theorem of a Galerkin-type system of equations of steady oscillations is established. Finally, the general solution of the system of homogenous equations of steady oscillation is also presented based on our theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lord H.W., Shulman Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  3. Green A.E., Lindsay K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  4. Green A.E., Naghdi P.M.: A re-examination of the basic postulates of thermo-mechanics. Proc. Roy. Soc. London A 432, 171–194 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Green A.E., Naghdi P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  6. Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–209 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Tzou D.Y.: A unified field approach for heat conduction from macro to micro scales. ASME J. Heat Transf. 117, 8–16 (1995)

    Article  Google Scholar 

  8. Quintanilla R., Racke R.: A note on stability in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 49, 1209–1213 (2006)

    Article  MATH  Google Scholar 

  9. Chandrasekharaiah D.S.: Hyperbolic thermoelasticity: Review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  10. Roychoudhuri S.K.: On a thermoelastic three phase-lag model. J. Therm. Stress. 30, 231–238 (2007)

    Article  Google Scholar 

  11. Quintanilla R., Racke R.: A note on stability in three phase-lag heat conduction. Int. J. Heat Mass Transf. 51, 24–29 (2008)

    Article  MATH  Google Scholar 

  12. Quintanilla R.: Spatial behavior of solutions of the three phase-lag heat equation. Appl. Math. Comput. 213, 153–162 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kar A., Kanoria M.: Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three phase-lag effect. Euro. J. Mech. A/Solids 28, 757–767 (2009)

    Article  MATH  Google Scholar 

  14. Kar A., Kanoria M.: Generalized thermo-visco-elastic problem of a sherical shell with three phase-lag effect. Appl. Math. Modell. 33, 3287–3298 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mukhopadhyay, S., Kumar, R.: Analysis of phase-lag effects on wave propagation in a thick plate under axisymmetric temperature distribution. Acta Mech. (2009) (online available: doi:10.1007/s00707-009-0209-9)

  16. Gurtin, M.E.: The linear theory of elasticity, in C. A. Trusdell (ed.). Handbuch der Physik VI a/2, 1–295 (1972)

  17. Nowacki W.: Dynamic problems in thermoelasticity. Noordhoff Int. Publ., Leyden (1975)

    Google Scholar 

  18. Nowacki, W.: Theory of elasticity. Mir, Moscow (1975) (Russian)

  19. Kupradze V.D., Gegelia T.G., Basheleishvili M.O., Burchuladze T.V.: Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. North-Holland Publ. Company, Amsterdam (1979)

    MATH  Google Scholar 

  20. Scalia A., Svanadze M.: On the representations of solutions of the theory of thermoelasticity with microtemperatures. J. Therm. Stress. 29, 849–863 (2006)

    Article  MathSciNet  Google Scholar 

  21. Galerkin B.: Contribution à la solution générale du probléme de la théorie de l’ élasticite, dans le cas de trois dimensions. C. R. Acad. Sci. Paris. 190, 1047–1048 (1930)

    MATH  Google Scholar 

  22. Iacovache M.: O extindere a metogei lui galerkin pentru sistemul ecuatiilor elsticittii. Bul. St. Acad. Rep. Pop. Române A1, 593–596 (1949)

    MathSciNet  Google Scholar 

  23. Nowacki W.: Green functions for the thermoelastic medium. Bull. Acad. Polon. Sci. Ser. Sci. Tech. 12, 465–472 (1964)

    MathSciNet  Google Scholar 

  24. Nowacki W.: On the completeness of potentials in micropolar elasticity. Arch. Mech. Stos. 21, 107–122 (1969)

    MATH  MathSciNet  Google Scholar 

  25. Sandru N.: On some problems of the linear theory of asymmetric elasticity. Int. J. Eng. Sci. 4, 81–96 (1966)

    Article  Google Scholar 

  26. Chandrasekharaiah D.S.: Complete solutions in the theory of elastic materials with voids-I. Quart. J. Mech. Appl. Math. 40, 401–414 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Chandrasekharaiah D.S.: Complete solutions in the theory of elastic materials with voids-II. Quart. J. Mech. Appl. Math. 42, 41–54 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ciarletta M.: A solution of Galerkin type in the theory of thermoelastic materials with voids. J. Therm. Stress. 14, 409–417 (1991)

    Article  MathSciNet  Google Scholar 

  29. Svanadze M.: Representation of the general solution of the equation of steady oscillations of two-component elastic mixtures. Int. Appl. Mech. 29, 22–29 (1993)

    Article  MathSciNet  Google Scholar 

  30. Svanadze M., de Boer R.: On the representations of solutions in the theory of fluid-saturated porous media. Quart. J. Mech. Appl. Math. 58, 551–562 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Ciarletta M.: A theory of micropolar thermoelasticity without energy dissipation. J. Therm. Stress. 22, 581–594 (1999)

    Article  MathSciNet  Google Scholar 

  32. Ciarletta M.: General theorems and fundamental solutions in the dynamical theory of mixtures. J. Elast. 39, 229–246 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santwana Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, S., Kothari, S. & Kumar, R. On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags. Acta Mech 214, 305–314 (2010). https://doi.org/10.1007/s00707-010-0291-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0291-z

Keywords

Navigation