Skip to main content
Log in

Existence and uniqueness results for a nonlinear differential equation arising in stagnation point flow in a porous medium

  • Published:
Acta Mechanica Aims and scope Submit manuscript

An Erratum to this article was published on 20 April 2012

Abstract

We establish existence and uniqueness results over the semi-infinite interval [0, ∞) for a class of nonlinear third-order ordinary differential equations arising in the stagnation point flow in a porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlichting H.: Boundary Layer Theory. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  2. Hiemenz K.: Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytech J. 326, 321–410 (1911)

    Google Scholar 

  3. Goldstein S.: Modern Developments in Fluid Dynamics. Oxford University Press, London (1938)

    MATH  Google Scholar 

  4. Howarth L.: On the solution of the laminar boundary layer equations. Proc. Roy. Soc. Lond. A 164, 547–579 (1938)

    Article  MATH  Google Scholar 

  5. Gersten K., Papenfuss H.D., Gross J.F.: Influence of the Prandtl number on second-order heat transfer due to surface curvature at a three dimensional stagnation point. Int. J. Heat Mass. Transf. 21, 275–284 (1978)

    Article  Google Scholar 

  6. Liao S.J.: A uniformly valid analytic solution of two-dimensional viscous flow over a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hartree D.R.: On an equation occurring in Falkner–Skan approximate treatment of the equations of the boundary layer. Proc. Camb. Philos. Soc. 33, 223–239 (1937)

    Article  Google Scholar 

  8. Stewartson K.: Further solutions of the Falkner–Skan equation. Proc. Camb. Philos. Soc. 50, 454–465 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  9. Weyl H.: On the differential equations of the simplest boundary layer problems. Ann. Math. 43, 381–407 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hussaini M.Y., Lakin W.D., Nachman A.: On similarity solution of a boundary layer problem with an upstream moving wall. SIAM J. Appl. Math. 7, 699–709 (1987)

    Article  MathSciNet  Google Scholar 

  11. Coppel W.A.: On a differential equation of boundary layer theory. Philos. Trans. Roy. Soc. Lond. 253, 101–136 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  12. Afzal N.: Momentum transfer on power law stretching plate with free stream pressure gradient. Int. J. Eng. Sci. 41, 1197–1207 (2003)

    Article  Google Scholar 

  13. Pade O.: On the solution of Falkner–Skan equations. J. Math. Anal. Appl. 285, 264–274 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nasser E.S.: Numerical solution for the Falkner–Skan equation. Chaos Solitons Fract. 35, 738–746 (2008)

    Article  MATH  Google Scholar 

  15. Zaturska M.B., Banks W.H.: A new solution branch of the Falkner–Skan equation. Acta Mech. 152, 197–201 (2001)

    Article  MATH  Google Scholar 

  16. Astin P., Wilks G.: Laminar jet assimilation into non-uniform flows. Proc. Roy. Soc. Lond. A 453, 593–606 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang G.C., Lan K.Q.: The velocity and shear stress functions of the Falkner–Skan equation arising in boundary layer theory. J. Math. Anal. Appl. 328, 1297–1308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nield D.A., Bejan A.: Convection in Porous Media, 2nd edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  19. Ingham D.B., Pop I.: Transport Phenomena in Porous Media. Pergamon, New York (1998)

    MATH  Google Scholar 

  20. Alchaar S., Vasseur P., Bilgen E.: Effects of a magnetic field on the onset of convection in porous medium. Heat Mass Transf. 30, 259–267 (1995)

    Article  Google Scholar 

  21. Joseph D.D., Nield D.A., Papanicolaou G.: Non-linear equation governing flow in a saturated porous medium. Water Resour. Res. 18, 1049–1052 (1982)

    Article  Google Scholar 

  22. Wu Q., Weinbaum S., Andreopoulus Y.: Stagnation-point flows in a porous medium. Chem. Eng. Sci. 60, 123–134 (2005)

    Article  Google Scholar 

  23. Kumaran V., Tamizharasi R., Vajravelu K.: Approximate analytic solutions of stagnation point flow in a porous medium. Commun. Nonlinear Sci. Numer. Simulat. 14, 2677–2688 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuppalapalle Vajravelu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00707-012-0657-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Gorder, R.A., Vajravelu, K. Existence and uniqueness results for a nonlinear differential equation arising in stagnation point flow in a porous medium. Acta Mech 210, 215–220 (2010). https://doi.org/10.1007/s00707-009-0202-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0202-3

Keywords

Navigation