Skip to main content
Log in

Generalized wave equation in nonlocal elasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We study the motion of a one-dimensional continuum whose deformation is described by a strain measure of nonlocal type. In particular, we use the Caputo fractional derivatives and a linear relation between stress and strain measure to obtain an integro-differential equation of motion. This equation is solved in the space of tempered distributions by using the Fourier and Laplace transforms. The properties of the solution are examined and compared with the classical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atanackovic T.M., Guran A.: Theory of Elasticity for Scientists and Engineers. Birkhauser, Boston (2000)

    Google Scholar 

  2. Gorenflo R., Mainardi F.: Fractional calculus, integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F.(eds) Fractional Calculus in Continuum Mechanics., pp. 223–276. Springer, Berlin (1977)

    Google Scholar 

  3. Kilbas A.A., Srivastava H.M., Trujillo J.I.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Klimek M.: Fractional sequential mechanics—models with symmetric fractional derivative. Czechoslovak J. Phys. 51, 1348–1354 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lazopoulos K.A.: Non-local continuum mechanics and fractional calculus. Mech. Res. Commun. 33, 753–757 (2006)

    Article  MathSciNet  Google Scholar 

  6. Magnus W., Oberhettinger F.: Formeln und Sätze für die speziellen Funktionen der mathematischen Physik. Springer, Berlin (1948)

    MATH  Google Scholar 

  7. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  8. Oldham K.B., Spanier J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  9. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  10. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  11. Schwartz L.: Théorie des distributions. T.I, Hermann, Paris (1957)

    MATH  Google Scholar 

  12. Schwartz L.: Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1961)

    MATH  Google Scholar 

  13. Stein E.M.: Singular Integrals and Differential Properties of Functions. Princeton University Press, Princeton (1970)

    Google Scholar 

  14. Szmydt Z.: Fourier Transformation and Linear Differential Equations. Reidel, Dordrecht (1977)

    MATH  Google Scholar 

  15. Titchmarsh E.C.: Introduction to the theory of Fourier Integrals. Clarendon press, Oxford (1948)

    Google Scholar 

  16. Vladimirov V.S.: Generalized functions in Mathematical Physics. Mir Publishers, Moscow (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.M. Atanackovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanackovic, T., Stankovic, B. Generalized wave equation in nonlocal elasticity. Acta Mech 208, 1–10 (2009). https://doi.org/10.1007/s00707-008-0120-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0120-9

Keywords

Navigation