Skip to main content
Log in

Designing an inhomogeneity with uniform interior stress in finite plane elastostatics

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

We consider an inhomogeneity-matrix system from a particular class of compressible hyperelastic materials of harmonic-type undergoing finite plane deformations. We discuss the idea that by adjusting the remote (Piola) stress we can design the shape of the inhomogeneity in such a way that the interior (Piola) stress distribution remains uniform. In fact, using complex variable techniques, we show that a uniform (Piola) stress distribution can be achieved inside the inhomogeneity when the system is subjected to linear remote loading, in which case, the inhomogeneity is necessarily hypotrochoidal with three cusps. We obtain the complete solution of the corresponding inhomogeneity-matrix system in this case. In addition, we consider the more general case when the system is subjected to nonuniform remote loading characterized by stress functions in the form of nth degree polynomials in the complex variable z describing the matrix. In this case, by finding the complete solution of the system, we show that we can again obtain uniform stress inside a hypotrochoidal inhomogeneity with n + 1 cusps. Finally, we illustrate our results with an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eshelby J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 241: 376–396

    MATH  MathSciNet  Google Scholar 

  2. Eshelby J. D. (1959). The elastic field outside an elliptic inclusion. Proc. R. Soc. Lond. A 252: 56–569

    MathSciNet  Google Scholar 

  3. Sendeckyj G. P. (1970). Elastic inclusion problems in plane elastostatics. Int. J. Solid. Struct. 6: 1535–1543

    Article  MATH  Google Scholar 

  4. Dundurs J. and Hetenyi M. (1961). The elastic plane with a circular insert, loaded by a radial force. ASME J. Appl. Mech. 28: 103–111

    MATH  MathSciNet  Google Scholar 

  5. Dundurs J. (1963). Concentrated force in an elastically embedded disk. ASME J. Appl. Mech. 30: 568–570

    Google Scholar 

  6. Dundurs J. and Mura T. (1964). Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12: 177–189

    Article  MathSciNet  Google Scholar 

  7. Dundurs J. and Sendeckyj G. P. (1965). Edge dislocation inside a circular inclusion. J. Mech. Phys. Solids 13: 141–147

    Article  Google Scholar 

  8. Dundurs, J.: Elastic interaction of dislocations with inhomogeneities. Mathematical theory of dislocations (Mura, T., ed.), pp 7–115. New York: American Society of Mechanical Engineers 1969

  9. Dundurs J. (1989). Cavities vis-á-vis rigid inclusions and some related general results in plane elasticity. ASME J. Appl. Mech. 56: 786–790

    Article  MATH  MathSciNet  Google Scholar 

  10. Mura T. (1987). Micromechanics of defects in solids, 2nd ed. Martinus Nijhoff, The Netherlands

    Google Scholar 

  11. Ru C.-Q. and Schiavone P. (1996). On the elliptic inclusion in antiplane shear. Math. Mech. Solids 1: 327–333

    Article  MATH  MathSciNet  Google Scholar 

  12. Ru C.-Q. and Schiavone P. (1997). A circular inclusion with circumferentially inhomogeneous interface in antiplane shear. Proc. R. Soc. Lond. A 453: 2551–2572

    MATH  MathSciNet  Google Scholar 

  13. Milton G. W. (2001). The theory of composites. Cambridge University Press, London

    Google Scholar 

  14. Jasiuk I. (1995). Polygonal cavities vis-a-vis rigid inclusions: effective elastic moduli of materials with polygonal inclusions. Int. J. Solid. Struct. 32: 407–422

    Article  MATH  Google Scholar 

  15. Jasiuk I., Mura T. and Tsuchida E. (1988). Thermal stresses and thermal expansion coefficients of short fiber composites with sliding interfaces. ASME J. Engng. Mat. Tech. 110: 96–100

    Article  Google Scholar 

  16. Jasiuk I., Tsuchida E. and Mura T. (1987). The sliding inclusion under shear. Int. J. Solid. Struct. 23: 1373–1385

    Article  MATH  Google Scholar 

  17. Ogden R. W. and Isherwood D. A. (1978). Solution of some finite plane- strain problems for compressible elastic solids. Qu. J. Mech. Appl. Math. 31: 219–249

    Article  MATH  MathSciNet  Google Scholar 

  18. Varley E. and Cumberbatch E. (1980). Finite deformation of elastic materials surrounding cylindrical holes. J. Elast. 10: 341–405

    Article  MATH  Google Scholar 

  19. John F. (1960). Plane strain problems for a perfectly elastic material of harmonic type. Comm. Pure Appl. Math XIII: 239–290

    Article  Google Scholar 

  20. Horgan, C. O.: Equilibrium solutions for compressible nonlinearly elastic materials. Invited Chapter in: Nonlinear elasticity: theory and applications (Ogden, R. W., Fu, Y., eds). London Mathematical Society Lecture Notes, vol. 283, pp. 135–159. Cambridge University Press 2001

  21. Abeyaratne R. and Horgan C. O. (1984). The pressurized hollow sphere problem in finite elastostatics for a class of compressible materials. Int. J. Solid. Struct. 20: 715–723

    Article  MATH  MathSciNet  Google Scholar 

  22. Jafari A. H., Abeyaratne R. and Horgan C. O. (1984). The finite deformation of a pressurized circular tube for a class of compressible materials. J. Appl. Math. Phys. (ZAMP) 35: 227–246

    Article  MATH  MathSciNet  Google Scholar 

  23. Horgan C. O. (1989). Some remarks on axisymmetric solutions in finite elastostatics for compressible materials. Proc. Royal Irish Academy, Section A 89: 185–193

    MATH  MathSciNet  Google Scholar 

  24. Horgan C. O. (1995). On axisymmetric solutions for compressible nonlinearly elastic solids. J. Appl. Math. Phys. (ZAMP) 46: S107–S125

    Article  MATH  MathSciNet  Google Scholar 

  25. Li X. and Steigmann D. J. (1993). Finite plane twist of an annular membrane. Quart. J. Mech. Appl. Math. 46: 601–625

    Article  MATH  MathSciNet  Google Scholar 

  26. Abeyaratne, R., Some finite elasticity problems involving crack tips. In modelling problems in crack tip mechanics (Pindera, J. T., ed.), pp. 3–24, Waterloo: University of Waterloo, Canada 1983

  27. Knowles J. K. and Sternberg E. (1975). On the singularity induced by certain mixed boundary value problems in linearized and nonlinear elastostatics. Int. J. Solid. Struct. 11: 1173–1201

    Article  MathSciNet  MATH  Google Scholar 

  28. Ru C.-Q. (2002). On complex-variable formulation for finite plane elastostatics of harmonic materials. Acta Mech. 156: 219–234

    Article  MATH  Google Scholar 

  29. Ru C.-Q., Schiavone P., Sudak L. J. and Mioduchowski A. (2005). Uniformity of stresses inside an elliptic inhomogeneity in finite plane elastostatics. Int. J. Non-Linear Mech. 40: 281–287

    Article  MATH  MathSciNet  Google Scholar 

  30. Muskhelishvili N. I. (1953). Some basic problems of the mathematical theory of elasticity. P. Noordhoff, Groningen, The Netherlands

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schiavone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.I., Schiavone, P. Designing an inhomogeneity with uniform interior stress in finite plane elastostatics. Acta Mech 197, 285–299 (2008). https://doi.org/10.1007/s00707-007-0510-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-007-0510-4

Keywords

Navigation