Skip to main content

Advertisement

Log in

Quantum capacitances of alkaline-earth metals: Be, Ca, and Mg integrated on Al12N12 and Al12P12 nanostructured—insight from DFT approach

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this study, the quantum capacitance (CQ) of aluminum nitride (Al12N12) and aluminum phosphide (Al12P12) have been investigated to explore the effects of Be, Ca, and Mg alkali-earth metals doping on the electronic properties, structural ability, and quantum capacitance of Al12N12@Be, Al12N12@Mg, Al12N12@Ca, Al12P12@Be, Al12P12@Mg, and Al12P12@Ca nanostructured using density functional theory (DFT) computation at the ωB97XD/6-311+G(d, p) level of theory. Detailed investigation into the electronic properties showed that Al12N12@Be and Al12P12@Be with value 6.95 and 6.17 eV possessed greater energy gap. Al12N12@Be and Al12P12@Ca possessed higher second-order stabilization energy with values 245.15 and 372.9 kJ/mol, respectively. Investigation into the quantum capacitance showed the maximum quantum capacitance with respect to Al12N12 surface is observed in Al12N12@Be with CQ value of 193.20 μF/cm2, and with respect to Al12N12, it is observed in Al12P12@Ca with CQ value of 107.14 μF/cm2. The trend of results obtained, can be seen to provide an effective and simple new idea for the design of Al12N12 and Al12P12-based supercapacitors that possess high energy density and storage ability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are available within the manuscript and the its associated supporting information.

References

  1. Guelpa E, Verda V (2019) Appl Energy 252:113474

    Article  Google Scholar 

  2. Aneke M, Wang M (2016) Appl Energy 179:350

    Article  Google Scholar 

  3. Poizot P, Dolhem F (2011) Energy Environ Sci 4:2003

    Article  CAS  Google Scholar 

  4. Dennison L, Morrison L, Conway G, Yardley L (2013) J Med Internet Res 15:e2583

    Article  Google Scholar 

  5. Kundur P, Malik O (2022) Power system stability and control. McGraw-Hill Education

    Google Scholar 

  6. Krishan O, Suhag S (2019) Int J Energy Res 43:6171

    Article  Google Scholar 

  7. Bu F, Zhou W, Xu Y, Du Y, Guan C, Huang W (2020) npj Flexible Electron 4:1

    Article  Google Scholar 

  8. Wen J, Xu B, Gao Y, Li M, Fu H (2021) Energy Storage Mater 37:94

    Article  Google Scholar 

  9. Kumar D, Tomar A, Singal S, Singh G, Sharma R (2020) J Power Sources 462:228173

    Article  CAS  Google Scholar 

  10. Chen H, Lin Y, Chen Y, Chen C (2018) ACS Appl Energy Mater 2:459

    Article  Google Scholar 

  11. Louis H, Ikenyirimba O, Unimuke T, Mathias G, Gber T, Adeyinka A (2022) Sci Rep 12:15608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Q, Zhang MZ, Zhang X, Chou S (2018) Small 14:1702883

    Article  Google Scholar 

  13. Huang S, Zhu X, Sarkar S, Zhao Y (2019) APL Mater 7:100901

    Article  Google Scholar 

  14. Bhatt A, Ongsakul W, Singh J (2022) Sustainable Energy Technol Assess 50:101864

    Article  Google Scholar 

  15. Sharma P, Kumar V (2020) J Electron Mater 49:3520

    Article  CAS  Google Scholar 

  16. Majumdar D, Mandal M, Bhattacharya S (2020) Emerg Mater 3:347

    Article  CAS  Google Scholar 

  17. Han Y, Dai L (2019) Macromol Chem Phys 220:1800355

    Article  Google Scholar 

  18. Hu R, Shang J (2019) Appl Surf Sci 496:143659

    Article  CAS  Google Scholar 

  19. Wang G, Jin Z (2021) J Mater Chem C 9:620

    Article  CAS  Google Scholar 

  20. Khan P, Jamshaid M, Tabassum S, Perveen S, Mahmood T, Ayub K, Yang J, Gilani M (2021) J Mol Liq 344:117828

    Article  CAS  Google Scholar 

  21. Heimböckel R, Hoffmann F, Fröba M (2019) Phys Chem Chem Phys 21:3122

    Article  PubMed  Google Scholar 

  22. Sengupta A (2018) Appl Surf Sci 451:141

    Article  CAS  Google Scholar 

  23. Louis H, Ekereke E, Isang B, Ikeuba A, Amodu I, Gber T, Owen A, Adeyinka A, Agwamba E (2022) ACS Omega 50:46183

    Article  Google Scholar 

  24. Hao S, Zhang L, Wang X, Zhao G, Hou P, Xu X (2021) Energy Fuels 35:12628

    Article  CAS  Google Scholar 

  25. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko B, Gomperts R, Mennucci B, Hratchian H, Ortiz J, Izmaylov A, Sonnenberg J, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Millam J, Klene M, Adamo C, Cammi R, Ochterski J, Martin R, Morokuma K, Farkas O, Foresman J, Fox D (2016) Gaussian 16, Revision C.01. Gaussian, Inc, Wallingford, CT

    Google Scholar 

  26. Zhurko G, Zhurko D (2013) Chemcraft 1.6, 2008

  27. Jiang L, Yang S, Song W, Zhao J, Lu Z, Zhai Q, Wang J (2020) Chem Nano Mat 6:308

    CAS  Google Scholar 

  28. Zhao X, Li H, Zhang M, Pan W, Luo Z, Sun X (2022) ACS Appl Mater Interfaces 14:34781

    Article  CAS  PubMed  Google Scholar 

  29. Vella D, Goriely A (2016) Europhys Lett 113:38005

    Article  Google Scholar 

  30. Lu T (2014) Multiwfn. Software manual, version 3(6)

  31. Edwards P (2002) J Chem Inf Comput Sci 42:1270

    Article  CAS  Google Scholar 

  32. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G, Cococcioni M, Dabo I, Corso A, Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys Condens Matter 21:395502

    Article  PubMed  Google Scholar 

  33. Louis H, Amodu I, Unimuke T, Gber T, Isang B, Adeyinka A (2022) Mater Today Commun 32:103946

    Article  CAS  Google Scholar 

  34. Aljafari B (2019) In: ECS Meeting Abstracts MA2019-01, p 616. IOP Publishing

  35. Gao Y, Zhi C, Cui P, Zhang K, Lv L, Wang Y (2020) Chem Eng J 400:125967

    Article  CAS  Google Scholar 

  36. Kamel M, Mohammadifard K (2021) Chem Rev Lett 4:54

    CAS  Google Scholar 

  37. Louis H, Udoh E, Amodu I, Ekereke E, Isang B, Onyebuenyi I, Adeyinka A (2022) J Comput Biophys Chem 32:103946

    CAS  Google Scholar 

  38. Adalikwu S, Louis H, Iloanya A, Edet H, Akem M, Eno E, Manicum A (2022) ACS Appl Bio Matter 5:5887

    Article  CAS  Google Scholar 

  39. Kvalheim M, Revzen S (2021) Phys D: Nonlinear Phenom 425:132959

    Article  Google Scholar 

  40. Emamian S, Lu T, Kruse H, Emamian H (2019) J Comput Chem 40:2868

    Article  CAS  PubMed  Google Scholar 

  41. Yar M, Hashmi M, Ayub K (2019) J Mol Liq 296:111929

    Article  CAS  Google Scholar 

  42. Louis H, Isang B, Unimuke T, Gber T, Amodu I, Ikeuba A, Adeyinka A (2023) J Solid State Electrochem 27:47

    Article  CAS  Google Scholar 

  43. Duarte D, Sosa G, Peruchena N (2013) J Mol Model 19:2035

    Article  CAS  PubMed  Google Scholar 

  44. Louis H, Patrick M, Amodu I, Benjamin I, Ikot I, Iniama G, Adeyinka A (2022) Mater Today Commun 34:105048

    Article  Google Scholar 

  45. Lu T, Chen F (2013) J Phys Chem A 117:3100

    Article  CAS  PubMed  Google Scholar 

  46. Bronstein H, Nielsen C, Schroeder B, McCulloch I (2020) Nat Rev Chem 4:66

    Article  CAS  Google Scholar 

  47. Mahmoud C, Anelli A, Csányi G, Ceriotti M (2020) Phys Rev B 102:235130

    Article  Google Scholar 

  48. Louis H, Gber T, Charlie D, Egemonye T, Orosun M (2022). J Iran Chem Soc. https://doi.org/10.1007/s13738-022-02707-4

    Article  Google Scholar 

  49. Dagdag O, Guo L, Safi Z, Verma C, Ebenso E, Wazzan N, Masroor S, Haldhar R, Jodeh M, El Gouri M (2020) J Mol Liq 317:114249

    Article  CAS  Google Scholar 

  50. Mohammadi M, Abbas F, Louis H, Amodu I (2022) J Phys Chem Sol 174:111174

    Article  Google Scholar 

  51. Fouda A, El-Askalany A, Molouk A, Elsheikh N, Abousalem A (2021) Sci Rep 11:21672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors want to convey their gratitude to everyone who has helped them with this project and to the Centre for high-performance computing (CHPC), South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitler Louis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekereke, E.E., Ikechukwu, O.C., Louis, H. et al. Quantum capacitances of alkaline-earth metals: Be, Ca, and Mg integrated on Al12N12 and Al12P12 nanostructured—insight from DFT approach. Monatsh Chem 154, 355–365 (2023). https://doi.org/10.1007/s00706-023-03046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03046-7

Keywords

Navigation