Skip to main content
Log in

Electrochemical reactivity of thin film of plumbagin at ionic liquid | water interface

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The electrochemical behavior of plumbagin at the glassy carbon electrode modified by a thin film of tetraoctylphosphonium bromide has been investigated using cyclic and square-wave voltammetry. It was found that the redox transformation of plumbagin gives rise to two dependent systems, I/I’ and, II/II’, which are monoelectronic and resulting likely, respectively, in the formation of a monoanionic radical end of a dianion radical. The two systems were quasi-reversible. The formation of ion pairs was the main effect governing the observed redox processes and the obtained system was influenced by the scan rate as well as the scan frequency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crawford PW, Gross J, Lawson K (1997) J Electrochem Soc 144:3710

    Article  CAS  Google Scholar 

  2. Gulaboski R, Bogeski I, Mirceski V, Saul S, Pasieka B, Haeri HH, Stefova M, Stanoeva JP, Mitrev S, Hoth M, Kappl R (2013) Sci Rep 3:1

    Article  CAS  Google Scholar 

  3. Augustin HW, Hofmann E (1963) Acta Biol Reed Germ 11:624

    Google Scholar 

  4. Alegría AE, Sanchez-Cruz P, Rivas L (2004) Free Radic Biol Med 37:1631

    Article  PubMed  CAS  Google Scholar 

  5. Bhat MA (2012) Electrochim Acta 81:275

    Article  CAS  Google Scholar 

  6. Bautista-Martı́nez JA, González I, Aguilar-Martı́nez M (2004) J Electroanal Chem 573:289

  7. Huynh MT, Anson CW, Cavell AC, Stahl SS, Hammes-Schiffer S (2016) J Am Chem Soc 138:15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vishwanath RS, Nery EW, Martin J (2019) Electrochim Acta 306:54

    Article  CAS  Google Scholar 

  9. Chadar D, Banerjee P, Saha SK, Bhand S, Patil R, Salunke-Gawali S (2019) J Mol Struct 1179:443

    Article  CAS  Google Scholar 

  10. Subramanian S, Ferreira MMC, Trsic M (1998) Struct Chem 9:47

    Article  CAS  Google Scholar 

  11. Emery S, Polequevitch PF (2000) Drug Res 50:1120

    Google Scholar 

  12. Ferreira VF, Jorqueira A, Souza AMT, da Silva MN, de Souza MCBV, Gouvêa RM, Rodrigues CR, Pinto AV, Castro HC, Santos DO, Araújo HP, Bourguignon SC (2006) Bioorg Med Chem 14:5459

    Article  CAS  PubMed  Google Scholar 

  13. dos Santos AF, Ferraz PAL, Pinto AV, Pinto MCFR, Goulart MOF, Sant’Ana AEG (2000) Int J Parasitol 30:1199

    Article  PubMed  Google Scholar 

  14. Teixeira MJ, De Almeida YM, Viana JR, Filha JGH (2001) Phytother Res 15:44

    Article  CAS  PubMed  Google Scholar 

  15. Mirčeski V, Gulaboski R, Bogeski I, Hoth M (2007) J Phys Chem 111:6068

    Article  CAS  Google Scholar 

  16. Elhabiri M, Sidorov P, Cesar-Rodo E, Marcou G, Lanfranchi DA, Davioud-Charvet E, Horvath D, Varnek A (2015) Chem Eur J 21:3415

    Article  CAS  PubMed  Google Scholar 

  17. Song Y, Buettner GR (2010) Free Radic Biol Med 49:919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolton JL, Trush MA, Penning TM, Dryhurst G, Monks TJ (2000) Chem Res Toxicol 13:135

    Article  CAS  PubMed  Google Scholar 

  19. Ngameni E, Tonle IK, Nanseu CP, Wandji R (2000) Electroanalysis 12:847

    Article  CAS  Google Scholar 

  20. Munir S, Shah A, Zafar F, Badshah A, Wang X, Rehman Z, Hussain H, Lunsford SK (2012) J Electrochem Soc 159:112

    Article  CAS  Google Scholar 

  21. Munir S, Shaha A, Raufa A, Badshaha A, Lunsford SK, Rehmana Z, Hussainc H, Khan GS (2012) Electrochim Acta 88:858

    Article  CAS  Google Scholar 

  22. Bouffier L, Lister KE, Higgins SJ, Nichols RJ, Doneux T (2012) J Electroanal Chem 664:80

    Article  CAS  Google Scholar 

  23. Ardakani MM, Karami PE, Zare HR, Hamzehloo M (2007) Microchim Acta 159:165

    Article  CAS  Google Scholar 

  24. De Abreu FC, Lopes ACO, Goulart OFJ (2004) Electroanal Chem 562:53

    Article  CAS  Google Scholar 

  25. Ferraz PAL, De Abreu FC, Pinto AV, Glezer V, Tonholo J, Goulart MOFJ (2001) Electroanal Chem 507:275

    Article  CAS  Google Scholar 

  26. Frontana C, Frontana-Uribe BA, Gonza I (2004) J Electroanal Chem 573:307

    Article  CAS  Google Scholar 

  27. Staley PA, Lopez EM, Clare LA, Smith DK (2015) J Phys Chem 119:20319

    CAS  Google Scholar 

  28. Nikitina VA, Nazmutdinov RR, Tsirlina GA (2011) J Phys Chem 115:668

    Article  CAS  Google Scholar 

  29. Hern LS, Gonz FJ, Gonz I (2009) Org Biomol Chem 7:1896

    Article  CAS  Google Scholar 

  30. Damle MS, Newton LAA, Villalba M, Leslie R (2010) Electroanalysis 22:2491

    Article  CAS  Google Scholar 

  31. Ebelle CT, Nassi A, Njanja E (2010) J Electroanal Chem 642:61

    Article  CAS  Google Scholar 

  32. Koel M (2005) C R Anal Chem 35:177

    CAS  Google Scholar 

  33. Njanja E, Nassi A, Ngameni E, Elleouet C (2007) Electrochem Commun 9:1695

    Article  CAS  Google Scholar 

  34. Nakanishi T, Yilmaz I, Nakashima N, Kadish KM (2003) J Phys Chem 107:12789

    Article  CAS  Google Scholar 

  35. Nassi A, Ebelle CT, Njanja E, Ngameni E (2011) Electroanalysis 23:424

    Article  CAS  Google Scholar 

  36. Mazloum-Ardakani M, Khoshroo A (2013) Electrochim Acta 103:77

    Article  CAS  Google Scholar 

  37. Guin PS, Das S, Mandal PC (2011) Int J Electrochem Sci 2011:86

    Google Scholar 

  38. Lim ZH, Lay E, Chng K, Hui Y, Webster RD (2013) J Phys Chem 117:2396

    Article  CAS  Google Scholar 

  39. Guin PS, Das S, Mandal PC (2008) Int J Electrochem Sci 3:1016

    CAS  Google Scholar 

  40. Fessendenlc RW (1975) J Am Chem Soc 1505:7505

    Google Scholar 

  41. Priyadarsini KI, Tracy M, Wardman P (1996) Free Radical Res 25:393

    Article  CAS  Google Scholar 

  42. Adamiac W, Shul G, Rozniecka E, Satoh M, Chen J (2011) Electroanalysis 23:1921

    Article  CAS  Google Scholar 

  43. Adamiak W, Shul G, Rozniecka E, Satoh M, Chen J (2011) Electroanalysis 23:1921

    Article  CAS  Google Scholar 

  44. Liu L, Duquesne K, Sturgis JN, Scheuring S, Joseph C (2009) J Mol Biol 393:27

    Article  CAS  PubMed  Google Scholar 

  45. Matsumiya M, Suda S, Tsunashima K, Sugiya M, Kishioka S (2008) J Electroanal Chem 622:129

    Article  CAS  Google Scholar 

  46. Dzoyem JP, Tangmouo JG, Lontsi D, Etoa FX, Lohoue PJ (2007) Phytother Res 674:671

    Article  CAS  Google Scholar 

  47. Nassi A, Ebelle T, Njanja E (2011) Electroanalysis 23:424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achille Nassi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nassi, A., Sop, S.D.K., Leuna, JB.M. et al. Electrochemical reactivity of thin film of plumbagin at ionic liquid | water interface. Monatsh Chem 153, 569–576 (2022). https://doi.org/10.1007/s00706-022-02940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02940-w

Keywords

Navigation