Skip to main content
Log in

A support vector machine analysis to predict density of mixtures of methanol and six ionic liquids

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are typically mixed together and/or with conventional solvents, and other organic and inorganic compounds to inhibit unfavorable characteristics. Methanol is a widely used solvent and additive in many industrial applications and can be beneficially combined with ILs. Ionic liquids in isolation have some intrinsic disadvantages such as high viscosity. Pumping viscous liquids is a challenge for most industrial applications. This undesirable feature is typically tackled by combining ILs with specific solvents. Here, the binary attributes of IL–solvent combinations are assessed and correlated utilizing 731 data records from published sources. A support vector machine (SVM) algorithm is applied to establish reliable correlations between binary density of the IL systems and the methanol component they contain. Error analysis of the results suggests that the proposed SVM model is highly reliable for the purpose of determining the density of IL–methanol systems with a high degree of accuracy such as coefficient of determination (\( \bar{R} \)) of greater than 0.99.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shojaee SA, Hezave ZA, Lashkarbolooki M, Shafipour ZS (2014) Chem Ind Chem Eng Q 20:325

    Article  CAS  Google Scholar 

  2. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  3. Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis. Wiley, Weinheim

    Google Scholar 

  4. Ohno H (ed) (2011) Electrochemical Aspects of Ionic Liquids, 2nd edn. Wiley, New York

    Google Scholar 

  5. Najdanovic-Visak V, Esperança JM, Rebelo LP, da Ponte MN, Guedes HJ, Seddon KR, Szydlowski J (2002) Phys Chem Chem Phys 4:1701

    Article  CAS  Google Scholar 

  6. Lehmann J, Rausch MH, Leipertz A, Fröba AP (2010) J Chem Eng Data 55:4068

    Article  CAS  Google Scholar 

  7. Wang Z, Fu L, Xu H, Shang Y, Zhang L, Zhang J (2012) J Chem Eng Data 57:1057

    Article  CAS  Google Scholar 

  8. Yu Z, Gao H, Wang H, Chen L (2012) J Solut Chem 41:173

    Article  CAS  Google Scholar 

  9. Qian W, Xu Y, Zhu H, Yu C (2012) J Chem Thermodyn 49:87

    Article  CAS  Google Scholar 

  10. Cortes C, Vapnik V (1995) Mach Learn 20:273

    Google Scholar 

  11. Tyagi S, Panigrahi SK (2017) Appl Artif Intell 31:209

    Article  Google Scholar 

  12. Mashford J, De Silva D, Burn S, Marney D (2012) Appl Artif Intell 26:429

    Article  Google Scholar 

  13. Yang S, Lu W, Chen N, Hu Q (2005) J Mol Struct Theochem 719:119

    Article  CAS  Google Scholar 

  14. Lind P, Maltseva T (2003) J Chem Inf Comput Sci 43:1855

    Article  CAS  Google Scholar 

  15. Liu HX, Xue CX, Zhang RS, Yao XJ, Liu MC, Hu ZD, Fan BT (2004) J Chem Inf Comput Sci 44:1979

    Article  CAS  Google Scholar 

  16. Lashkarbolooki M, Hezave AZ, Babapoor A (2013) Korean J Chem Eng 30:213

    Article  CAS  Google Scholar 

  17. Schalkoff RJ (1997) Artificial neural networks. McGraw-Hill, New York

    Google Scholar 

  18. Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  19. Cao K, Liu XS, Cao F, Zhao M, Yu SW (2006) A real-time traffic information prediction model Based on AOSVR and on-line learning. IEEE Intelligent Transportation Systems Conference, Toronto

    Google Scholar 

  20. Zafarani-Moattar MT, Shekaari H (2005) J Chem Eng Data 50:1694

    Article  CAS  Google Scholar 

  21. Zafarani-Moattar MT, Shekaari H (2006) J Chem Thermodyn 38:1377

    Article  CAS  Google Scholar 

  22. Iglesias-Otero MA, Troncoso J, Carballo E, Romani L (2007) J Solution Chem 36:1219

    Article  CAS  Google Scholar 

  23. Stoppa A, Hunger J, Buchner R (2008) J Chem Eng Data 54:472

    Article  Google Scholar 

  24. Arce A, Rodríguez H, Soto A (2006) Fluid Phase Equilib 242:164

    Article  CAS  Google Scholar 

  25. Yang Q, Zhang H, Su B, Yang Y, Ren Q, Xing H (2010) J Chem Eng Data 55:1750

    Article  CAS  Google Scholar 

  26. González EJ, Alonso L, Domínguez Á (2006) J Chem Eng Data 51:1446

    Article  CAS  Google Scholar 

  27. Vercher E, Orchillés AV, Miguel PJ, Martínez-Andreu A (2007) J Chem Eng Data 52:1468

    Article  CAS  Google Scholar 

  28. Domańska U, Pobudkowska A, Wiśniewska A (2006) J Solution Chem 35:311

    Article  CAS  Google Scholar 

  29. Hagan MT, Demuth HB, Beale MH, De Jesus O (2002) Neural network design, 2nd edn. Hagan of Stillwater, Oklahoma, U.S.A.

    Google Scholar 

Download references

Acknowledgements

The authors wish to express special thanks to Mr. Elias Khalafi for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Wood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golparvar, A., Bahreini, A., Choubineh, A. et al. A support vector machine analysis to predict density of mixtures of methanol and six ionic liquids. Monatsh Chem 149, 2145–2152 (2018). https://doi.org/10.1007/s00706-018-2297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2297-5

Keywords

Navigation