Skip to main content
Log in

On non-equilibrium thermodynamics approach for the analysis of membrane processes: a case study of pervaporation

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A brief review of the application of non-equilibrium thermodynamics (NET) is presented and advantages of some results of NET for the analysis of membrane processes are discussed. The case study of evaporation through a membrane (pervaporation) is considered on the basis of simplest approach in the framework of linear NET. A few examples are presented for membranes on the basis of polymers of heteroaromatic structures (polyheteroarylenes).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prigogine I (1961) Introduction to thermodynamics of irreversible processes, 2nd edn. Interscience, London

    Google Scholar 

  2. Mulder J (1996) Basic principles of membrane technology, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  3. Baker RW (2012) Membrane technology and applications, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  4. Lipnizki F, Trägårdh G (2001) Sep Purif Rev 30:49

    Article  CAS  Google Scholar 

  5. Izák P, Bartovská L, Friess K, Šípek M, Uchytil P (2003) Polymer 44:2679

    Article  Google Scholar 

  6. Feng X, Huang RYM (1997) Ind Eng Chem Res 36:1048

    Article  CAS  Google Scholar 

  7. Baranowski B (1991) J Membr Sci 57:119

    Article  CAS  Google Scholar 

  8. Hwang ST (2004) Am Inst Chem Eng J 50:862

    Article  CAS  Google Scholar 

  9. Edelen DGB (1974) Int J Eng Sci 12:397

    Article  Google Scholar 

  10. Villaluenga JPG, Kjelstrup S (2012) J Non-Equilib Thermodyn 37:353

    Article  Google Scholar 

  11. Toikka AM, Penkova AV, Markelov DA (2014) Int J Heat Mass Transf 72:423

    Article  CAS  Google Scholar 

  12. Toikka A, Naumkin P, Penkova A (2015) Chem Eng Res Des 104:669

    Article  CAS  Google Scholar 

  13. Kovács Z, Discacciati M, Samhaber W (2009) J Membr Sci 332:38

    Article  Google Scholar 

  14. Gupta VK, Hwang S-T, Krantz WB, Greenberg AR (2007) Desalination 208:1

    Article  CAS  Google Scholar 

  15. Fang Y, Bian L, Wang X (2013) J Membr Sci 437:72

    Article  CAS  Google Scholar 

  16. Tanaka Y (2006) J Membr Sci 281:517

    Article  CAS  Google Scholar 

  17. Wang L, Min J (2011) J Membr Sci 378:462

    Article  CAS  Google Scholar 

  18. Moody TP, Shepard HK (2004) Biophys Chem 108:51

    Article  CAS  Google Scholar 

  19. Ghoreyshi AA, Farhadpour FA, Soltanieh M, Abdelghani M (2003) J Membr Sci 211:215

    Article  CAS  Google Scholar 

  20. Kuhn J, Stemmer R, Kapteijn F, Kjelstrup S, Gross J (2009) J Membr Sci 330:388

    Article  CAS  Google Scholar 

  21. Alklaibi AM, Lior N (2004) Desalination 171:111

    Article  Google Scholar 

  22. Peppin SSL, Elliott JAW (2001) Adv Coll Interface Sci 92:1

    Article  CAS  Google Scholar 

  23. Chapman PD, Oliveira T, Livingston AG, Li K (2008) J Membr Sci 318:5

    Article  CAS  Google Scholar 

  24. Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV (2008) Sep Purif Technol 62:1

    Article  CAS  Google Scholar 

  25. Smitha B, Suhanya D, Sridhar S, Ramakrishna M (2004) J Membr Sci 241:1

    Article  CAS  Google Scholar 

  26. Kujawa J, Cerneaux S, Kujawski W (2015) J Membr Sci 474:11

    Article  CAS  Google Scholar 

  27. Koch K, Górak A (2014) Chem Eng Sci 115:95

    Article  CAS  Google Scholar 

  28. Lutze P, Gorak A (2013) Chem Eng Res Des 91:1978

    Article  CAS  Google Scholar 

  29. Kreis P, Gorak A (2006) Chem Eng Res Des 84:595

    Article  CAS  Google Scholar 

  30. Roth T, Kreis P, Gorak A (2013) Chem Eng Res Des 91:1171

    Article  CAS  Google Scholar 

  31. Lipnizki F, Field RW, Ten P-K (1999) J Membr Sci 153:183

    Article  CAS  Google Scholar 

  32. Matsui S, Paul DR (2004) J Membr Sci 235:25

    Article  CAS  Google Scholar 

  33. Zeng C, Li J, Li P, Chen T, Lin Y, Wang D, Chen C (2006) Chem Eng Sci 61:1892

    Article  CAS  Google Scholar 

  34. Bettens B, Degrève J, Van der Bruggen B, Vandecasteele C (2007) Sep Sci Technol 42:1

    Article  CAS  Google Scholar 

  35. Schaetzel P, Vauclair C, Nguyen QT, Bouzerar R (2004) J Membr Sci 244:117

    Article  CAS  Google Scholar 

  36. Mujiburohman M, Mahdi KA, Elkamel A (2011) J Membr Sci 381:1

    Article  CAS  Google Scholar 

  37. Jeck S, Scharfer P, Kind M (2012) J Membr Sci 417–418:154

    Article  Google Scholar 

  38. Heintz A, Stephan WJ (1994) Membr Sci 89:143

    Article  CAS  Google Scholar 

  39. Heintz A, Stephan WJ (1994) Membr Sci 89:153

    Article  CAS  Google Scholar 

  40. Ghosh UK, Pradhan NC, Adhikari B (2006) J Membr Sci 272:93

    Article  CAS  Google Scholar 

  41. Schaetzel P, Bendjama Z, Vauclair C, Nguyen QT (2001) J Membr Sci 191:95

    Article  CAS  Google Scholar 

  42. Farajnezhad A, Afshar OA, Khansary MA, Shirazian SJ (2016) Non-Equilib Thermodyn 41:215

    CAS  Google Scholar 

  43. Nguyen QT, Clement R (1991) J Membr Sci 55:1

    Article  Google Scholar 

  44. Yamasaki A, Iwatsubo T, Masuoka T, Mizoguchi K (1994) J Membr Sci 89:111

    Article  CAS  Google Scholar 

  45. Toikka AM, Aksenova EL, Kuznetsov YuP (2001) Russ J Appl Chem 74:933

    Article  CAS  Google Scholar 

  46. Huang Y-Sh, Sundmacher K, Qia Z, Schlunder E-U (2004) Chem Eng Sci 59:2863

    Article  CAS  Google Scholar 

  47. Huang Y-Sh, Schlunder E-U, Sundmacher K (2005) Catal Today 104:360

    Article  CAS  Google Scholar 

  48. Kedem O (1989) J Membr Sci 47:277

    Article  CAS  Google Scholar 

  49. Mulder MHV, Franken ACM, Smolders CA (1985) J Membr Sci 23:41

    Article  CAS  Google Scholar 

  50. Simon AM, Doran P, Paterson RJ (1996) Membr Sci 109:231

    Article  CAS  Google Scholar 

  51. Radovanovic P, Thiel SW, Hwang S-T (1990) J Membr Sci 48:55

    Article  CAS  Google Scholar 

  52. Molina C (1997) J Membr Sci 132:119

    Article  CAS  Google Scholar 

  53. Pulyalina AYu, Polotskaya GA, Toikka AM (2016) Russ Chem Rev 85:81

    Article  CAS  Google Scholar 

  54. Kondepudi D, Prigogine I (2015) Modern thermodynamics: from heat engines to dissipative structures, 2nd edn. Wiley, Chichester

    Google Scholar 

  55. Valentinyi N, Csefalvay E, Mizsey P (2013) Chem Eng Res Des 91:174

    Article  CAS  Google Scholar 

  56. Zharov VT, Serafimov LA (1975) Physicochemical fundamentals of simple distillation and rectification. Khimia, Leningrad (in Russian)

    Google Scholar 

  57. Doherty MF, Perkins JD (1978) Chem Eng Sci 33:281

    Article  CAS  Google Scholar 

  58. Tanihara N, Umeo N, Kawabata T, Tanaka K, Kita H, Okamoto K (1995) J Membr Sci 104:181

    Article  CAS  Google Scholar 

  59. Schmeling N, Konietzny R, Sieffert D, Rölling P, Staudt C (2010) Beilstein J Org Chem 6:789

    Article  Google Scholar 

  60. Yang L, Kang Y, Wang Y, Xu L, Kita H, Okamoto K (2005) J Membr Sci 249:33

    Article  CAS  Google Scholar 

  61. VLE—Calc (Calculator of vapor-liquid and liquid-liquid phase equilibria). http://vle-calc.com/index.html. Accessed 15 Feb 2017

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant 16-13-10164). Author is grateful to Natalia Avagimova for the help with calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Toikka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toikka, A. On non-equilibrium thermodynamics approach for the analysis of membrane processes: a case study of pervaporation. Monatsh Chem 149, 467–473 (2018). https://doi.org/10.1007/s00706-017-2104-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2104-8

Keywords

Navigation