Skip to main content
Log in

Characterization of narcotics using differential mobility spectrometry

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The topic of this work is the use of differential mobility spectrometry for the characterization of narcotics. Studies were performed for amphetamine, methamphetamine, ketamine, heroin, and cocaine dissolved in methanol. Each target molecule appears at a specific compensation voltage under a fixed value of radiofrequency (RF) voltage. Values of compensation voltage of product ion peak at RF = 1480 V for cocaine, heroin, ketamine, methamphetamine, and amphetamine at 110 °C appears at 3.33, 2.43, 2.12, −0.56, and −4.9 V, respectively. Nonlinear function curves were used for graphical differentiation of measured narcotics. This study also deals with the effects of temperature on peak position in differential mobility spectra. This rapidly developed method allows characterization of five illicit drugs in 100 s.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Demoranville LT, Verkouteren JR (2013) Talanta 106:375

    Article  CAS  Google Scholar 

  2. Barceloux DG (2012) Medical toxicology of drug abuse: synthesized chemicals and psychoactive plants. Wiley, New Jersey

    Book  Google Scholar 

  3. Gentili S, Cornetta M, Macchia T (2004) J Chromatogr B 801:289

    Article  CAS  Google Scholar 

  4. Gröger T, Schäffer M, Pütz M, Ahrens B, Drew K, Eschner M, Zimmermann J (2008) J Chromatogr A 1200:8

    Article  Google Scholar 

  5. Pujadas M, Pichini S, Civit E, Santamarina E, Perez K, de la Torre R (2007) J Pharm Biomed A 44:594

    Article  CAS  Google Scholar 

  6. Mortier KA, Maudens KE, Lambert WE, Clauwaert KM, van Bocxlaer JF, Deforce DL, van Peteghem CH, de Leenheer AP (2002) J Chromatogr B 779:321

    Article  CAS  Google Scholar 

  7. Moore C, Coulter C, Crompton K (2007) J Chromatogr B 859:208

    Article  CAS  Google Scholar 

  8. Pichini S, Pacifici R, Pellegrini M, Marchei E, Pérez-Alarcón E, Puig C, Vall O, García-Algar O (2003) J Chromatogr B 794:281

    Article  CAS  Google Scholar 

  9. Jeanwille PM, Estapé ES, Needham SR, Cole MJ (2000) Am Soc Mass Spec 11:257

    Article  Google Scholar 

  10. Dussy FE, Berchtold C, Briellmann TA, Lang C, Steiger R, Bovens M (2008) Forensic Sci Int 177:105

    Article  CAS  Google Scholar 

  11. Verkouteren JR, Staymates JL (2011) Forensic Sci Int 206:190

    Article  CAS  Google Scholar 

  12. Varesio E, Le Blanc JCY, Hopfgartner G (2011) Anal Bioanal Chem 402:2555

    Article  Google Scholar 

  13. Porta T, Varesio E, Hopfgartner G (2013) Anal Chem 85:11771

    Article  CAS  Google Scholar 

  14. Pollard MJ, Hilton CK, Li H, Kaplan K, Yost RA, Hill HH Jr (2011) Int J Ion Mobil Spectrom 14:22

    Article  Google Scholar 

  15. Papanastasiou D, Wollnik H, Rico G, Tadjimukhamedov F, Mueller W, Eiceman GA (2008) J Phys Chem A 112:3638

    Article  CAS  Google Scholar 

  16. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Int J Mass Spectrom 298:45

    Article  CAS  Google Scholar 

  17. Eiceman GA, Karpas Z, Hill HH Jr (2013) Ion mobility spectrometry. CRC Press, Boca Raton

    Google Scholar 

  18. Shvartsburg AA (2008) Differential ion mobility spectrometry: nonlinear ion transport and fundamentals of FAIMS. CRC Press, Boca Raton

    Book  Google Scholar 

  19. Guo D, Wang Y, Li L, Wang X, Luo J (2014) J Mass Spectrom 50:198

    Article  Google Scholar 

  20. Pavlačka M, Bajerová P, Kortánková K, Bláha J, Zástěra M, Mázl R, Ventura K (2016) Int J Ion Mobil Spectrom 19:31

    Article  Google Scholar 

  21. Babis JS, Sperline RP, Knight AK, Jones A, Gresham CA, Denton MB (2009) Anal Bioanal Chem 395:411

    Article  CAS  Google Scholar 

  22. Jakubowska M, Maziejuk M, Ceremuga M, Siczek J, Gallewicz W (2012) Int J Ion Mobil Spectrom 15:99

    Article  Google Scholar 

  23. Rokushika S, Hatano H, Hill HH Jr (1986) Anal Chem 58:361

    Article  CAS  Google Scholar 

  24. Eiceman GA, Nazarov EG, Stone JA (2003) Anal Chim Acta 493:185

    Article  CAS  Google Scholar 

  25. Krylov EV, Coy SL, Nazarov EG (2009) Int J Mass Spectrom 279:119

    Article  CAS  Google Scholar 

  26. Krylova N, Krylov E, Eiceman GA, Stone JA (2003) J Phys Chem A 107:3648

    Article  CAS  Google Scholar 

  27. Cumeras R, Figueras E, Davis CE, Baumbach JI, Gracia I (2015) Analyst 140:1391

    Article  CAS  Google Scholar 

  28. Owlstone Nanotech Inc. (2016) An Introduction to Ion Mobility Spectrometry with UltraFAIMS. http://www.owlstonenanotech.com/sites/default/files/ultrafaims/An%20Introduction%20to%20Ion%20Mobility%20Spectrometry%20with%20UltraFAIMS.pdf. Accessed 12 Dec 2016

Download references

Acknowledgements

This study was financially supported by the Research plan No. VG20132015107 “DRAGON—The Hand-held Narcotic Compounds Sniffer & Analyzer (2013–2015, MV0/VG)”, which was financed by the Ministry of the Interior of the Czech Republic (Security Research for the Needs of the State 2010–2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Bajerová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlačka, M., Ventura, K., Kortánková, K. et al. Characterization of narcotics using differential mobility spectrometry. Monatsh Chem 148, 1599–1604 (2017). https://doi.org/10.1007/s00706-017-1923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-1923-y

Keywords

Navigation