Skip to main content
Log in

The effect of point mutations on copper(II) complexes with peptide fragments encompassing the 106–114 region of human prion protein

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The tetrapeptides Ac-SKHM-NH2, Ac-TKHM-NH2, Ac-MKHS-NH2, Ac-S(OMe)KHM-NH2, and Ac-MKHS(OMe)-NH2 and the nonapeptides Ac-KTNSKHMAG-NH2 and Ac-KTNMKHSAG-NH2 were synthesized and their copper(II) complexes were studied by potentiometric, UV–Vis, circular dichroism (CD), and electron paramagnetic resonance (EPR) spectroscopic methods. These peptides mimic the 109–112 and 106–114 residues of the sequence of human prion protein. The imidazole-N donor atoms of histidyl residues were found to be the primary metal binding sites of all peptide fragments. This binding mode provides a good possibility for the cooperative deprotonation and metal ion coordination of two amide functions preceding histidine. The (Nim,N,N)-bonded species predominate in the pH range 5.5–7.0 and the free coordination sites of these species make possible the metal binding of weakly coordinating side chains. The comparison of the potentiometric and spectroscopic results revealed the stabilizing role of the oxygen donors of seryl, threonyl, or methoxyseryl residues of Ac-SKHM-NH2, Ac-TKHM-NH2, Ac-S(OMe)KHM-NH2, and Ac-KTNSKHMAG-NH2 containing the mutations in position 109. These interactions were, however, not observed in the peptides containing the specific amino acids in other locations of the peptide sequence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sigel H, Martin RB (1982) Chem Rev 82:385

    Article  CAS  Google Scholar 

  2. Sóvágó I (1990) In: Burger K (ed) Biocoordination chemistry, metal complexes of peptides and derivatives. Ellis Horwood, Chichester, p 135

    Google Scholar 

  3. Kozlowski H, Bal W, Dyba M, Kowalik-Jankowska T (1999) Coord Chem Rev 184:319

    Article  CAS  Google Scholar 

  4. Sóvágó I, Ősz K (2006) Dalton Trans 3841

  5. Brown DR, Kozlowski H (2004) Dalton Trans 1907

  6. Millhauser GL (2004) Acc Chem Res 37:79

    Article  CAS  Google Scholar 

  7. Jószai V, Nagy Z, Ősz K, Sanna D, Di Natale G, La Mendola D, Pappalardo G, Rizzarelli E, Sóvágó I (2006) J Inorg Biochem 100:1399

    Article  Google Scholar 

  8. Di Natale G, Grasso G, Impellizzeri G, La Mendola D, Micera G, Mihala N, Nagy Z, Ősz K, Pappalardo G, Rigó V, Rizzarelli E, Sanna D, Sóvágó I (2005) Inorg Chem 44:7214

    Article  CAS  Google Scholar 

  9. Grasso D, Grasso G, Guantieri V, Impellizzeri G, La Rosa C, Milardi D, Micera G, Ősz K, Pappalardo G, Rizzarelli E, Sanna D, Sóvágó I (2006) Chem Eur J 12:537

    Article  Google Scholar 

  10. Ősz K, Nagy Z, Pappalardo G, Di Natale G, Sanna D, Micera G, Rizzarelli E, Sóvágó I (2007) Chem Eur J 13:7129

    Article  Google Scholar 

  11. Di Natale G, Ősz K, Nagy Z, Sanna D, Micera G, Pappalardo G, Sóvágó I, Rizzerelli E (2009) Inorg Chem 48:4239

    Article  CAS  Google Scholar 

  12. Hahn M, Wolters D, Sheldrick WS, Hulsbergen FB, Reedijk J (1999) J Biol Inorg Chem 4:412

    Article  CAS  Google Scholar 

  13. Bóka B, Nagy Z, Várnagy K, Sóvágó I (2001) J Inorg Biochem 83:77

    Article  Google Scholar 

  14. Várnagy K, Bóka B, Sóvágó I, Sanna D, Marras P, Micera G (1998) Inorg Chim Acta 275–276:440

    Article  Google Scholar 

  15. Pettit LD, Robbins RA (1995) In: Berthon G (ed) Metal-peptide complex formation, in handbook of metal–ligand interactions in biological fluids, vol 1. Marcel Dekker, New York, p 636

    Google Scholar 

  16. Gergely A, Farkas E (1982) J Chem Soc Dalton Trans 381

  17. Bühl M (2000) J Inorg Biochem 80:137

    Article  Google Scholar 

  18. Farkas E, Kiss T (1989) Polyhedron 8:2463

    Article  CAS  Google Scholar 

  19. Szabó-Plánka T, Árkosi Z, Rockenbauer A, Korecz L (2001) Polyhedron 20:995

    Article  Google Scholar 

  20. Kowalik-Jankowska T, Stasiak M, Leplawy MT, Kozlowski H (1997) J Inorg Biochem 66:193

    Article  CAS  Google Scholar 

  21. Mlynarz P, Gaggelli N, Panek J, Stasiak M, Valensin G, Kowalik-Jankowska T, Leplawy ML, Latajka Z, Kozlowski H (2000) J Chem Soc Dalton Trans 1033

  22. Mlynarz P, Kowalik-Jankowska T, Stasiak M, Leplawy ML, Kozlowski H (1999) J Chem Soc Dalton Trans 3673

  23. Mlynarz P, Bal W, Kowalik-Jankowska T, Stasiak M, Leplawy ML, Kozlowski H (1999) J Chem Soc Dalton Trans 109

  24. Kállay C, Várnagy K, Malandrinos G, Hadjiliadis N, Sanna D, Sóvágó I (2006) Dalton Trans 4545

  25. Nishida Y, Hayashida K, Kida S (1980) J Coord Chem 10:101

    Article  CAS  Google Scholar 

  26. Irving H, Miles G, Pettit LD (1967) Anal Chim Acta 38:475

    Article  CAS  Google Scholar 

  27. Zékány L, Nagypál I (1985) In: Leggett D (ed) Computational methods for the determination of formation constants. Plenum, New York, p 291

  28. Gans P, Sabatini A, Vacca A (1985) J Chem Soc Dalton Trans 1195

Download references

Acknowledgments

This work was supported by the MTA(Hungary)-CNR(Italy) bilateral program and the research grant OTKA-NKTH 77586, OTKA 72956 and PD 72321 and TAMOP 4.2.1/B-09/1/KONV-2010-0007 (Hungary).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Sóvágó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kállay, C., Turi, I., Timári, S. et al. The effect of point mutations on copper(II) complexes with peptide fragments encompassing the 106–114 region of human prion protein. Monatsh Chem 142, 411–419 (2011). https://doi.org/10.1007/s00706-010-0413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0413-2

Keywords

Navigation