Skip to main content
Log in

Modelling of surface exchange reactions and diffusion in composites and polycrystalline materials

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Abstract

Surface exchange reactions and chemical diffusion in composites, consisting of a dilute distribution of inclusions in a matrix, and polycrystalline materials have been modelled by application of both a square grain and a spherical grain model. The diffusion equations have been solved numerically by employing a finite element approach in the case of the square grain model and the Laplace transform method involving numerical Laplace inversion with respect to the spherical grain model. The boundary conditions refer to oxygen exchange reactions between a gas phase and a mixed ionically–electronically conducting ceramic sample within the linear response regime, i.e. small variations of the oxygen partial pressure. Diffusion profiles as well as the time dependence of the total amount of exchanged oxygen (relaxation curves) have been calculated. A necessary requirement for effective medium diffusion is proposed, and appropriate relations for the effective chemical surface exchange coefficient and the effective chemical diffusion coefficient are derived. On the contrary, when the time constant for diffusion from the matrix into the inclusions of a composite exceeds considerably the relaxation time for effective medium diffusion, relaxation curves with two separate time constants are observed. Analogously, in the case of polycrystalline materials the overall transport process is determined by slow (rate-limiting) bulk diffusion from the grain boundaries into the grains. Adequate formulae for the relaxation times are given based on analytical approximations of the solution functions to the diffusion equations. In addition, the spherical grain model is applied to interpret the re-oxidation kinetics of the positive temperature coefficient of resistivity (PTC) ceramics based on conductivity relaxation experiments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Maier J (1995) Prog Solid St Chem 23:171

    Article  CAS  Google Scholar 

  2. Kaur I, Mishin Y, Gust W (1995) Fundamentals of grain and interphase boundary diffusion. Wiley, Chichester

    Google Scholar 

  3. Huybrechts B, Ishizaki K, Takata M (1995) J Mat Sci 30:2463

    Article  CAS  Google Scholar 

  4. Hennings DFK (1995) J Eur Ceram Soc 21:1637

    Article  Google Scholar 

  5. Gupta TK (1990) J Am Ceram Soc 73:1817

    Article  CAS  Google Scholar 

  6. Merkle R, Maier J (2008) Angew Chem Int Ed 47:3874

    Article  CAS  Google Scholar 

  7. Steele BCH (2000) Solid State Ionics 129:95

    Article  CAS  Google Scholar 

  8. Steele BCH, Hori KM, Uchino S (2000) Solid State Ionics 135:445

    Article  CAS  Google Scholar 

  9. Ji Y, Kilner JA, Carolan MF (2005) Solid State Ionics 176:937

    Article  CAS  Google Scholar 

  10. Fisher JC (1951) J Appl Phys 22:74

    Article  CAS  Google Scholar 

  11. Whipple RTP (1954) Philos Mag 45:1225

    Article  CAS  Google Scholar 

  12. Suzuoka T (1961) Trans Jap Inst Metals 2:25

    Article  CAS  Google Scholar 

  13. Gilmer GH, Farrell HH (1976) J Appl Phys 47:3792

    Article  CAS  Google Scholar 

  14. Gilmer GH, Farrell HH (1976) J Appl Phys 47:4373

    Article  CAS  Google Scholar 

  15. Preis W, Sitte W (1996) J Appl Phys 79:2986

    Article  CAS  Google Scholar 

  16. Preis W, Sitte W (2005) J Appl Phys 97:093504

    Article  Google Scholar 

  17. Levine HS, MacCallum CJ (1960) J Appl Phys 31:595

    Article  CAS  Google Scholar 

  18. Bokshtein BS, Magidson IA, Svetlov IL (1958) Phys Met Metallogr 6:81

    Google Scholar 

  19. Preis W, Sitte W (2005) J Phys Chem Solids 66:1820

    Article  CAS  Google Scholar 

  20. Preis W, Sitte W (2008) Solid State Ionics 179:765

    Article  CAS  Google Scholar 

  21. Gryaznov D, Fleig J, Maier J (2006) Solid State Ionics 177:1583

    Article  CAS  Google Scholar 

  22. Gryaznov D, Fleig J, Maier J (2008) Solid State Sci 10:754

    Article  CAS  Google Scholar 

  23. Jamnik J, Maier J (1997) Ber Bunsenges Phys Chem 101:23

    Article  CAS  Google Scholar 

  24. Jamnik J, Maier J (1998) J Phys Chem Solids 59:1555

    Article  CAS  Google Scholar 

  25. Leonhardt M, Jamnik J, Maier J (1999) Electrochem Solid-State Lett 2:333

    Article  CAS  Google Scholar 

  26. Chung Y-C, Kim CK, Wuensch BJ (2000) J Appl Phys 87:2747

    Article  CAS  Google Scholar 

  27. Harrison LG (1961) Trans Faraday Soc 57:1191

    Article  CAS  Google Scholar 

  28. Mishin YM, Herzig C (1995) NanoStruct Mater 6:859

    Article  Google Scholar 

  29. Hwang JCM, Balluffi RW (1979) J Appl Phys 50:1339

    Article  CAS  Google Scholar 

  30. Le Claire AD (1963) Brit J Appl Phys 14:351

    Article  Google Scholar 

  31. Chung Y-C, Wuensch BJ (1996) J Appl Phys 79:8323

    Article  CAS  Google Scholar 

  32. Gryaznov D, Fleig J, Maier J (2008) J Appl Phys 103:063717

    Article  Google Scholar 

  33. Kalnin JR, Kotomin EA, Maier J (2002) J Phys Chem Solids 63:449

    Article  CAS  Google Scholar 

  34. Jamnik J, Kalnin JR, Kotomin EA, Maier J (2006) Phys Chem Chem Phys 8:1310

    Article  CAS  Google Scholar 

  35. Belova IV, Murch GE (2004) Phil Mag 84:17

    Article  CAS  Google Scholar 

  36. Belova IV, Murch GE (2005) J Phys Chem Solids 66:722

    Article  CAS  Google Scholar 

  37. Kidner NJ, Perry NH, Mason TO, Garboczi EJ (2008) J Am Ceram Soc 91:1733

    Article  CAS  Google Scholar 

  38. McLachlan DS, Blaszkiewicz M, Newnham RE (1990) J Am Ceram Soc 73:2187

    Article  CAS  Google Scholar 

  39. Bunde A, Dieterich W (2000) J Electroceramics 5:81

    Article  CAS  Google Scholar 

  40. Knauth P (2000) J Electroceramics 5:111

    Article  CAS  Google Scholar 

  41. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London

    Google Scholar 

  42. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  43. Wagner C (1975) Prog Solid State Chem 10:3

    Article  Google Scholar 

  44. Heyne L (1977) Solid electrolytes. In: Geller S (ed) Topics in applied physics, vol 21. Springer, Berlin, p 169

    Google Scholar 

  45. Maier J (1998) Solid State Ionics 112:197

    Article  CAS  Google Scholar 

  46. Crank J (1975) The mathematics of diffusion. Oxford University Press, Oxford

    Google Scholar 

  47. Leonhardt M, De Souza RA, Claus J, Maier J (2002) J Electrochem Soc 149:J19

    Article  CAS  Google Scholar 

  48. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, Oxford

    Google Scholar 

  49. http://library.wolfram.com/infocenter/MathSource/4738/

  50. Preis W, Sitte W (2006) Solid State Ionics 177:3093

    Article  CAS  Google Scholar 

  51. Preis W, Sitte W (2006) Solid State Ionics 177:2549

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Preis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Preis, W. Modelling of surface exchange reactions and diffusion in composites and polycrystalline materials. Monatsh Chem 140, 1059–1068 (2009). https://doi.org/10.1007/s00706-009-0124-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0124-8

Keywords

Navigation