Skip to main content
Log in

Genomic and biological characteristics of a novel lytic phage, vB_MscM-PMS3, infecting the opportunistic zoonotic pathogen Mammaliicoccus sciuri

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Mammaliicoccus sciuri is an opportunistic zoonotic pathogen in humans and animals. We isolated the Mammaliicoccus phage vB_MscM-PMS3, which was also able to infect and lyse M. sciuri and M. lentus. The phage genome is a linear dsDNA that is 147,811 bp in length and contains 206 ORFs and three tRNA genes. It showed low genome coverage (< 17%) and sequence identity (< 91.3%) to other phage genomes. Phylogenetic analysis based on the whole genome and major capsid protein revealed that this phage clustered with members of the subfamily Twortvirinae of the family Herelleviridae, but it was distinctly separated from the other members, indicating its uniqueness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The complete genome sequence of phage vB_MscM-PMS3 has been deposited in the NCBI GenBank database under accession number MZ573780.2.

References

  1. Kloos WE, Schleifer KH, Smith RF (1976) Characterization of Staphylococcus sciuri sp. nov. and its subspecies 1. Int J Syst Evol Microbiol 26(1):22–37

    Google Scholar 

  2. Kloos WE, Bannerman TL (1994) Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 7:117–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Madhaiyan M, Wirth JS, Saravanan VS (2020) Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int J Syst Evol Microbiol 70(11):5926–5936

    Article  CAS  PubMed  Google Scholar 

  4. Sacramento AG, Fuga B, Monte DF et al (2022) Genomic features of mecA-positive methicillin-resistant Mammaliicoccus sciuri causing fatal infections in pets admitted to a veterinary intensive care unit. Microb Pathog 171:105733

    Article  CAS  PubMed  Google Scholar 

  5. de Carvalho TP, Moreira LGA, Vieira AD et al (2022) Mammaliicoccus (Staphylococcus) sciuri-induced suppurative meningoencephalitis and bacteremia in an infant western lowland gorilla (Gorilla gorilla gorilla). J Med Primatol 51(6):396–399

    Article  PubMed  Google Scholar 

  6. Meservey A, Sullivan A, Wu C, Lantos PM (2020) Staphylococcus sciuri peritonitis in a patient on peritoneal dialysis. Zoonoses Public Health 67(1):93–95

    Article  PubMed  Google Scholar 

  7. Saraiva MDMS, de Leon CMCG, Silva NMVD et al (2021) Staphylococcus sciuri as a reservoir of mec A to Staphylococcus aureus in non-migratory seabirds from a remote oceanic island. Microb Drug Resist 27(4):553–561

    Article  CAS  PubMed  Google Scholar 

  8. Rey Pérez J, Zálama Rosa L, García Sánchez A et al (2021) Multiple antimicrobial resistance in methicillin-resistant Staphylococcus sciuri group isolates from wild Ungulates in Spain. Antibiotics 10(8):920

    Article  PubMed  PubMed Central  Google Scholar 

  9. Salas M, Wernecki M, Fernández L et al (2020) Characterization of clinical MRSA isolates from Northern Spain and assessment of their susceptibility to phage-derived antimicrobials. Antibiotics 9(8):447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Walsh L, Johnson CN, Hill C, Ross RP (2021) Efficacy of phage-and bacteriocin-based therapies in combatting nosocomial MRSA infections. Front Mol Biosci 8:654038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kwon H, Park SY, Kim MS, Kim SG, Park SC, Kim JH (2022) Characterization of a lytic bacteriophage vB_SurP-PSU3 infecting Staphylococcus ureilyticus and its efficacy against biofilm. Front Microbiol 13:925866

    Article  PubMed  PubMed Central  Google Scholar 

  12. Han JE, Hwang SY, Kim JH et al (2013) CPRMethicillin resistant coagulase-negative staphylococci isolated from South Korean ducks exhibiting tremor. Acta Vet Scand 55(1):1–6

    Article  Google Scholar 

  13. Han JE, Lee S, Jeong DG et al (2017) Complete genome sequence of multidrug-resistant Staphylococcus sciuri strain SNUDS-18 isolated from a farmed duck in South Korea. J Glob Antimicrob Resist 11:108–110

    Article  PubMed  Google Scholar 

  14. Kim SG, Jun JW, Giri SS et al (2019) Isolation and characterization of pVa-21, a giant bacteriophage with anti-biofilm potential against Vibrio alginolyticus. Sci Rep 9(1):6284

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chin CS, Alexander DH, Marks P et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10(6):563–569

    Article  CAS  PubMed  Google Scholar 

  16. Walker BJ, Abeel T, Shea T et al (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9(11):e112963

    Article  PubMed  PubMed Central  Google Scholar 

  17. Garneau JR, Depardieu F, Fortier LC, Bikard D, Monot M (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  18. Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9(1):1–15

    Article  Google Scholar 

  19. AltschulSF GW, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  Google Scholar 

  20. Zimmermann L, Stephens A, Nam SZ et al (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430(15):2237–2243

    Article  CAS  PubMed  Google Scholar 

  21. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:54–57

    Article  Google Scholar 

  22. Gasteiger E, Hoogland C, Gattiker A, Duvaud SE, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Humana Press, Totowa, pp 571–607

  23. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  24. Moraru C, Varsani A, Kropinski AM (2020) VIRIDIC-A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 12(11):1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB (2018) Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 46:708–717

    Article  Google Scholar 

  26. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meier-Kolthoff JP, Göker M (2017) VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33(21):3396–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the ‘Development of Technology for the Biomaterialization of Marine Fishery Byproducts’ of the Korea Institute of Marine Science and Technology Promotion [KIMST], funded by the Ministry of Oceans and Fisheries [KIMST-20220128], and also supported by a research grant from the National Institute of Biological Resources [NIBR202322101], funded by the Ministry of Environment of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

JHK and JEH conceived the idea and designed the experiments. Material preparation and data collection were performed by HK, SYP, SL, and YBK. SGK and SCP helped with the experimental design. The first draft of the manuscript was written by HK, SYP, and SL, and all authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding authors

Correspondence to Jee Eun Han or Ji Hyung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Johannes Wittmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 753 KB)

Supplementary file2 (DOCX 77 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Park, S.Y., Lee, S. et al. Genomic and biological characteristics of a novel lytic phage, vB_MscM-PMS3, infecting the opportunistic zoonotic pathogen Mammaliicoccus sciuri. Arch Virol 169, 4 (2024). https://doi.org/10.1007/s00705-023-05940-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05940-1

Navigation