Skip to main content

Advertisement

Log in

A cDNA-based reverse genetics system for feline calicivirus identifies the 3′ untranslated region as an essential element for viral replication

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Virulent systemic feline calicivirus (VS-FCV) is a newly emerging FCV variant that is associated with a severe acute multisystem disease in cats that is characterized by jaundice, oedema, and high mortality (approximately 70%). VS-FCV has spread throughout the world, but there are no effective vaccines or therapeutic options to combat infection. VS-FCV may therefore pose a serious threat to the health of felines. The genomic characteristics and functions of VS-FCV are still poorly understood, and the reason for its increased pathogenicity is unknown. Reverse genetics systems are powerful tools for studying the molecular biology of RNA viruses, but a reverse genetics system for VS-FCV has not yet been reported. In this study, we developed a plasmid-based reverse genetics system for VS-FCV in which infectious progeny virus is produced in plasmid-transfected CRFK cells. Using this system, we found that the 3' untranslated region (UTR) and poly(A) tail are important for maintaining the infection and replication capacity of VS-FCV and that shortening of the poly(A) tail to less than 28 bases eliminated the ability to rescue infectious progeny virus. Whether these observations are unique to VS-FCV or represent more-general features of FCV remains to be determined. In conclusion, we successfully established a rapid and efficient VS-FCV reverse genetics system, which provides a good platform for future research on the gene functions and pathogenesis of VS-FCV. The effects of the deletion of 3' UTR and poly(A) tail on VS-FCV infectivity and replication also provided new information about the pathogenesis of VS-FCV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kadoi K, Kiryu M, Iwabuchi M, Kamata H, Yukawa M, Inaba Y (1997) A strain of calicivirus isolated from lions with vesicular lesions on tongue and snout. New Microbiol 20(2):141–148

    CAS  PubMed  Google Scholar 

  2. Harrison TM, Sikarskie J, Kruger J, Wise A, Mullaney TP, Kiupe M, Maes RK (2007) Systemic calicivirus epidemic in captive exotic felids. J Zoo Wildl Med 38:292–299

    Article  PubMed  Google Scholar 

  3. Pedersen NC, Elliot JB, Glasgow A, Poland A, Keel K (2000) An isolated epizootic of hemorrhagic-like fever in cats caused by a novel and highly virulent strain of feline calicivirus. Vet Microbiol 73:281–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hurley KE, Pesavento PA, Pedersen NC, Poland AM, Wilson E, Foley JE (2004) An outbreak of virulent systemic feline calicivirus disease. J Am Vet Med Assoc 224:241–249

    Article  PubMed  Google Scholar 

  5. Pesavento PA, MacLachlan NJ, Dillard-Telm L, Grant CK, Hurley KF (2004) Pathologic, immunohistochemical, and electron microscopic findings in naturally occurring virulent systemic feline calicivirus infection in cats. Vet Pathol 41:257–263

    Article  CAS  PubMed  Google Scholar 

  6. Coyne KP, Jones BR, Kipar A, Chantrey J, Porter CJ, Barber PJ, Dawson S, Gaskell RM, Radford AD (2006) A lethal outbreak of disease associated with feline calicivirus infection in cats. Vet Rec 158:544–550

    Article  CAS  PubMed  Google Scholar 

  7. Guo H, Miao Q, Zhu J, Yang Z, Liu G (2018) Isolation and molecular characterization of a virulent systemic feline calicivirus isolated in China. Infect Genet Evol 65:425–429

    Article  CAS  PubMed  Google Scholar 

  8. Seal BS, Ridpath JF, Mengeling WL (1993) Analysis of feline calicivirus capsid protein genes: identification of variable antigenic determinant regions of the protein. J Gen Virol 74:2519–2524

    Article  CAS  PubMed  Google Scholar 

  9. Sosnovtsev SA, Sosnovtsev SV, Green KY (1999) Mapping of the feline calicivirus proteinase responsible for autocatalytic processing of the non-structural polyprotein and identification of a stable proteinase–polymerase precursor protein. J Virol 73:6626–6633

    Article  PubMed  PubMed Central  Google Scholar 

  10. Neill JD, Sosnovtsev SV, Green KY (2000) Recovery and altered neutralization specificities of chimeric viruses containing capsid protein domain exchanges from antigenically distinct strains of feline calicivirus. J Virol 74:1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sosnovtsev SV, Green KY (2000) Identification and genomic mapping of the ORF3 and VPg proteins in feline calicivirus virions. Virology 277:193–203

    Article  CAS  PubMed  Google Scholar 

  12. Bertolotti-Ciarlet A, Crawford SE, Hutson AM, Estes MK (2003) The 3’ end of Norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein VP1: a novel function for the VP2 protein. J Virol 77:11603–11615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Glass PJ, White LJ, Ball JM, Leparc-Goffart I, Hardy ME, Estes MK (2000) Norwalk virus open reading frame 3 encodes a minor structural protein. J Virol 74:6581–6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sosnovtsev SV, Belliot G, Chang KO, Onwudiwe O, Green KY (2005) Feline calicivirus VP2 is essential for the production of infectious virions. J Virol 79:4012–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaiser WJ, Chaudhry Y, Sosnovtsev SV, Goodfellow I (2006) Analysis of protein-protein interactions in the feline calicivirus replication complex. J Gen Virol 87:363–368

    Article  CAS  PubMed  Google Scholar 

  16. Cancio-Lonches C, Yocupicio-Monroy M, Sandoval-Jaime C, Galvan-Mendoza I, Ureña L, Vashist S, Goodfellow I, Salas-Benito J, Gutiérrez-Escolano AL (2011) nucleolin interacts with the feline calicivirus 3’untranslated region and the protease-polymerase NS6 and NS7 proteins, playing a role in virus replication. J Virol 85:8056–8068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alhatlani B, Vashist S, Goodfellow I (2015) Functions of the 5’ and 3’ ends of calicivirus genomes. Virus Res 206:134–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sosnovtsev S, Green KY (1995) RNA transcripts derived from a cloned full-length copy of the feline calicivirus genome do not require VpG for infectivity. Virology 210:383–390

    Article  CAS  PubMed  Google Scholar 

  19. Oka T, Takagi H, Tohya Y (2014) Development of a novel single step reverse genetics system for feline calicivirus. J Virol Methods 207:178–181

    Article  CAS  PubMed  Google Scholar 

  20. Bai X, Buckle AM, Vladar EK, Janoff EN, Khare R, Ordway D, Beckham D, Fornis LB, Majluf-Cruz A, Fugit RV, Freed BM, Kim S, Sandhaus RA, Chan ED (2022) Enoxaparin augments α-1-antitrypsin inhibition of TMPRSS2, a promising drug combination against COVID-19. Sci Rep. https://doi.org/10.1038/s41598-022-09133-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  22. Thomas S, Lappin DF, Spears J, Bennett D, Nile C, Riggio MP (2017) Prevalence of feline calicivirus in cats with odontoclastic resorptive lesions and chronic gingivostomatitis. Res Vet Sci 111:124–126

    Article  PubMed  Google Scholar 

  23. Reynolds BS, Poulet H, Pingret JL, Jas D, Brunet S, Lemeter C, Etievant M, Boucraut-Baralon C (2009) A nosocomial outbreak of feline calicivirus associated virulent systemic disease in france. J Feline Med Surg 11:633–644

    Article  PubMed  Google Scholar 

  24. Ohe K, Sakai S, Sunaga F, Murakami M, Kiuchi A, Fukuyama M, Furuhata K, Hara M, Soma T, Ishikawa Y, Taneno A (2006) Detection of feline calicivirus (FCV) from vaccinated cats and phylogenetic analysis of its capsid genes. Vet Res Commun 30:293–305

    Article  CAS  PubMed  Google Scholar 

  25. Schorr-Evans EM, Poland A, Johnson WE, Pedersen NC (2003) An epizootic of highly virulent feline calicivirus disease in a hospital setting in New England. J Feline Med Surg 5:217–226

    Article  CAS  PubMed  Google Scholar 

  26. Schulz BS, Hartmann K, Unterer S, Eichhorn W, Majzoub M, Homeier-Bachmann T, Truyen U, Ellenberger C, Huebner J (2011) Two outbreaks of virulent systemic feline calicivirus infection in cats in Germany. Berl Munch Tierarztl Wochenschr 124:186–193

    PubMed  Google Scholar 

  27. Battilani M, Vaccari F, Carelle MS, Morandi F, Benazzi C, Kipar A, Dondi F, Scagliarini A (2013) Virulent feline calicivirus disease in a shelter in Italy: a case description. Res Vet Sci 95:283–290

    Article  PubMed  PubMed Central  Google Scholar 

  28. Willi B, Spiri AM, Meli ML, Samman A, Hoffmann K, Sydler T, Cattori V, Graf F, Diserens KA, Padrutt I, Nesina S, Berger A, Ruetten M, Riond B, Hosie MJ, Hofmann-Lehmann R (2016) Molecular characterization and virus neutralization patterns of severe, non-epizootic forms of feline calicivirus infections resembling virulent systemic disease in cats in Switzerland and in Liechtenstein-ScienceDirect. Vet Microbiol 182:202–212

    Article  CAS  PubMed  Google Scholar 

  29. Radford AD, Bennett M, McArdle F, Dawson S, Turner PC, Glenn MA, Gaskell RM (1997) The use of sequence analysis of a feline calicivirus (FCV) hypervariable region in the epidemiological investigation of FCV related disease and vaccine failures. Vaccine 15:1451–1458

    Article  CAS  PubMed  Google Scholar 

  30. Abente EJ, Sosnovtsev SV, Bok K, Green KY (2010) Visualization of feline calicivirus replication in real-time with recombinant viruses engineered to express fluorescent reporter proteins. Virology 400:18–31

    Article  CAS  PubMed  Google Scholar 

  31. Mitra T, Sosnovtsev SV, Green KY (2004) Mutagenesis of tyrosine 24 in the VPg protein is lethal for feline calicivirus. J Virol 78:4931–4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thumfart JO, Meyers G (2002) Feline calicivirus: recovery of wild-type and recombinant viruses after transfection of cRNA or cDNA constructs. J Virol 76:6398–6407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim SY, Lee JH, Shin HS, Kang HJ, Kim YS (2002) The human elongation factor 1 alpha (EF-1α) first intron highly enhances expression of foreign genes from the murine cytomegalovirus promoter. J Biotechnol 93:183–187

    Article  CAS  PubMed  Google Scholar 

  34. Baxt B, Grubman MJ, Bachrach HL (1979) The relation of poly(A) length to specific infectivity of viral RNA: a comparison of different types of foot-and-mouth disease virus. Virology 98:480–483

    Article  CAS  PubMed  Google Scholar 

  35. Silvestri LS, Parilla JM, Morasco BJ, Ogram SA, Flanegan JB (2006) Relationship between poliovirus negative-strand RNA synthesis and the length of the 3’ poly (A) tail. Virology 345:509–519

    Article  CAS  PubMed  Google Scholar 

  36. Tacahashi Y, Uyeda I (1999) Restoration of the 3’ end of potyvirus RNA derived from poly (A)-deficient infectious cDNA clones. Virology 265:147–152

    Article  CAS  PubMed  Google Scholar 

  37. Rohll JB, Moon DH, Evans DJ, Almond JW (1995) The 3’ untranslated region of picornavirus RNA: features required for efficient genome replication. J Virol 69:7835–7844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goodfellow I, Chaudhry Y, Gioldasi I, Gerondopoulos A, Natoni A, Labrie L, Laliberté JF, Roberts L (2005) Calicivirus translation initiation requires an interaction between VPg and eIF 4 E. EMBO Rep 6:968–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goodfellow I (2011) The genome-linked protein VPg of vertebrate viruses-a multifaceted protein. Curr Opin Viro 1:355–362

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Tomoichiro Oka (Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan) for providing the pKS435 vector.

Funding

This study was sponsored by the National Natural Science Foundation of China (31672572 and 32172832) and Shanghai Aoji Biotechnology Co., Ltd ((21)0526).

Author information

Authors and Affiliations

Authors

Contributions

Jie Cheng: conceptualization, data curation, formal analysis, writing –original draft preparation, visualization, funding acquisition. Aoxing Tang: methodology, formal analysis, investigation, software. Jing Chen: methodology, visualization. Da Zhang: methodology. Chunchun Meng: conceptualization, resources. Chuanfeng Li: validation, resources. Hulai Wei: supervision, validation, resources, writing – review and editing. Guangqing Liu: conceptualization, resources, project administration, supervision, validation, writing – review and editing, funding acquisition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hulai Wei or Guangqing Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Animal and human rights statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Handling Editor: Tim Skern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 418 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Tang, A., Chen, J. et al. A cDNA-based reverse genetics system for feline calicivirus identifies the 3′ untranslated region as an essential element for viral replication. Arch Virol 168, 33 (2023). https://doi.org/10.1007/s00705-022-05695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-022-05695-1

Navigation