Skip to main content

Advertisement

Log in

A pepper mottle virus-based vector enables systemic expression of endoglucanase D in non-transgenic plants

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Plant-virus-based expression vectors have been used as an alternative to the creation of transgenic plants. Using a virus-based vector, we investigated the feasibility of producing the endoglucanase D (EngD) from Clostridium cellulovorans in Nicotiana benthamiana. This protein has endoglucanase, xylanase, and exoglucanase activities and may be of value for cellulose digestion in the generation of biofuels from plant biomass. The EngD gene was cloned between the nuclear inclusion b (NIb)- and coat protein (CP)-encoding sequences of pSP6PepMoV-Vb1. In vitro transcripts derived from the clone (pSP6PepMoV-Vb1/EngD) were infectious in N. benthamiana but caused milder symptoms than wild-type PepMoV-Vb1. RT-PCR amplification of total RNA from non-inoculated upper leaves infected with PepMoV-Vb1/EngD produced the target band for the CP, partial NIb and EngD-CP regions of PepMoV-V1/EngD, in addition to nonspecific bands. Western blot analysis showed the CP target bands of PepMoV-Vb1/EngD as well as non-target bands. EngD enzymatic activity in infected plants was detected using a glucose assay. The plant leaves showed increased senescence compared with healthy and PepMoV-Vb1-infected plants. Our study suggests the feasibility of using a viral vector for systemic infection of plants for expression of heterologous engD for the purpose of digesting a cellulose substrate in plant cells for biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chinedu SN, Nwinyi OC, Okafor UA, Okochi VI (2011) Kinetic study and characterization of 1,4-β-Endoglucanase of Aspergillus niger ANL301. Dyn Biochem. Process Biotechnol Mol Biol 5:41–46

    Google Scholar 

  2. Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ (2013) Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels 6:136–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brunechy R, Selig MJ, Vinzant TB, Himmel ME, Lee D, Blaylock M, Decker SR (2011) In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize. Biotechnol Biofuels 4:1–11

    Article  Google Scholar 

  4. Dai Z, Hooker BS, Anderson DB, Thomas SR (2000) Expression of Acidothermus cellulolyticus endo-glucanse E1 in transgenic tobacco biochemical characteristic and physiological effects. Transgenic Res 9:43–54

    Article  CAS  PubMed  Google Scholar 

  5. Klose H, Gunl M, Usadel B, Fischer R, Commandeur U (2015) Cell wall modification in tobacco by differential targeting of recombinant endoglucanase from Trichoderma reesei. BMC Plant Biol 15:54–64

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ziegelhoffer T, Raasch JA, Austin-Phillips S (2001) Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol Breed 8:147–158

    Article  CAS  Google Scholar 

  7. Dai Z, Hooker BS, Anderson DB, Thomas SR (2000) Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol Breed 6:277–285

    Article  CAS  Google Scholar 

  8. Taylor LE II, Dai Z, Decker SR, Brunecky R, Adney WS, Ding SY, Himmel ME (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26:413–424

    Article  CAS  PubMed  Google Scholar 

  9. Ghosh-Biswas GC, Ransom C, Sticklen M (2006) Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci 171:617–623

    Article  Google Scholar 

  10. Chou HL, Dai Z, Hsieh CW, Ku MSB (2011) High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid. Biotechnol Biofuels 4:58–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nigorikawa M, Watanabe A, Furukawa K, Sonoki T, Ito Y (2012) Enhanced saccharification of rice straw by overexpression of rice exo-glucanase. Rice 5:14–20

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oraby H, Venkatesh B, Dale B, Ahmand R, Ransom C, Oehmke J, Sticklen M (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16:739–749

    Article  CAS  PubMed  Google Scholar 

  13. Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotech J 9:884–896

    Article  CAS  Google Scholar 

  14. Hwang MS, Lindenmuth BE, McDonald K, Falk BW (2012) Bipartite and tripartite Cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticus endo-1,4-β-glucanase and other proteins in non-transgenic plants. BMC Biotechnol 12:66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carrington JC, Haldeman R, Dolja VV, Restrepo-Hartwig MA (1993) Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. J Virol 67:6995–7000

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Choi IR, Stenger DC, Morris TJ, French R (2000) A plant virus vector for systemic expression of foreign genes in cereals. Plant J 23:547–555

    Article  CAS  PubMed  Google Scholar 

  17. German-Retana S, Candresse T, Alias E, Delbos RR, Gall OL (2000) Effects of green fluorescent protein or β-glucuronidase tagging on the accumulation and pathogenicity of a resistance-breaking Lettuce mosaic virus isolate in susceptible and resistant lettuce cultivars. Mol Plant Microbe Interact 13:316–324

    Article  CAS  PubMed  Google Scholar 

  18. Tourino A, Sanchez F, Fereres A, Ponz F (2008) High expression of foreign proteins from a biosafe viral vector derived from Turnip mosaic virus. Span J Agr Res 6:1–12

    Google Scholar 

  19. Varrelmann M, Maiss E (2000) Mutations in the coat protein gene of plum pox virus suppress particle assembly, heterologous encapsidation and complementation in transgenic plants of Nicotiana benthamiana. J Gen Virol 81:567–576

    Article  CAS  PubMed  Google Scholar 

  20. Calvo M, Dujovny G, Lucini C, Ortuno J, Alamillo JM, Simon-Mateo C, Lopez-Moya JJ, Garcia JA (2010) Constraints to virus infection in Nicotiana benthamiana plants transformed with a polyvirus amplicon. BMC Plant Biol 10:139

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dietrich C, Maiss E (2003) Fluorescent labeling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plant. J Gen Virol 84:2871–2876

    Article  CAS  PubMed  Google Scholar 

  22. Ivanov KI, Puustinen P, Gabrenaite R, Vihinen H, Ronnstrand L, Valmu L, Kalkkinen N, Makinen K (2003) Phosphorylation of the potyvirus capsid protein by protein kinase CK2 and its relevance for virus infection. Plant Cell 15:2124–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tatineni S, McMechan AJ, Hein GL, French R (2011) Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: formation of dense fluorescent aggregates for sensitive virus tracking. Virology 410:268–281

    Article  CAS  PubMed  Google Scholar 

  24. Masuta C, Yamana T, Tacahashi Y, Uyeda I, Sato M, Ueda S, Matsumura T (2000) Development of clover yellow vein virus as an efficient, stable gene expression system for legume species. Plant J 23:539–546

    Article  CAS  PubMed  Google Scholar 

  25. Fernandez-Fernandez MR, Mourino M, Rivera J, Rodriguez F, Plana-Duran J, Garcia JA (2001) Protection of rabbits against rabbit hemorrhagic disease virus by immunization with the VP60 protein expressed in plants with a potyvirus-based vector. Virology 280:283–291

    Article  CAS  PubMed  Google Scholar 

  26. Hsu CH, Lin SS, Liu FL, Su WC, Yeh SD (2004) Oral administration of a mite allergen expressed by Zucchini yellow mosaic virus in cucurbit species downregulates allergen-induced airway inflammation and IgE synthesis. J Allergy Clin Immunol 13:1079–1085

    Article  Google Scholar 

  27. Kelloniemi J, Makinen K, Valkonen PT (2006) A potyvirus-based gene vector allows producing active human S-COMT and animal GFP, but not human sorcin, in vector-infected plants. Biochimie 88:505–513

    Article  CAS  PubMed  Google Scholar 

  28. Majer E, Navarro JA, Daros JA (2015) A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein. Biotechnol J 10:1792–1802

    Article  CAS  PubMed  Google Scholar 

  29. Avesani L, Marconi G, Morandini F, Albertini E, Bruschetta M, Bortesi L, Pezzotti M, Porceddu A (2007) Stability of Potato virus X expression vectors is related to insert size: implications for replication models and risk assessment. Transgenic Res 16:587–597

    Article  CAS  PubMed  Google Scholar 

  30. Zitter TA (1972) Naturally occurring pepper virus strains in South Florida. Plant Dis 56:586–590

    Google Scholar 

  31. Nelson MR, Wheeler RE (1972) A new virus disease of pepper in Arizona. Plant Dis 56:731–735

    Google Scholar 

  32. Hiebert E, Purcifull DE (1992) A comparison of pepper mottle virus with potato virus Y and evidence for their distinction. Arch Virol Suppl 5:321–356

    Article  CAS  PubMed  Google Scholar 

  33. Vance VB, Moore D, Turpen TH, Bracker A, Hollowell VC (1992) The complete nucleotide sequence of pepper mottle virus genomic RNA: comparison of the encoded polyprotein with those of other sequenced potyviruses. Virology 191:19–30

    Article  CAS  PubMed  Google Scholar 

  34. Lee MY, Song YS, Ryu KH (2011) Development of infectious transcripts from full-length and GFP-tagged cDNA clones of Pepper mottle virus and stable systemic expression of GFP in tobacco and pepper. Virus Res 155:487–494

    Article  CAS  PubMed  Google Scholar 

  35. Lee CY, Yu KO, Kim SW, Han SO (2010) Enhancement of the thermostability and activity of mesophilic Clostridium cellulovorans EngD by in vitro DNA recombination with Clostridium thermocellum CelE. J Biosci Bioeng 109:331–336

    Article  CAS  PubMed  Google Scholar 

  36. Kwon JY, Hong JS, Kim MJ, Choi SH, Min BE, Song EG, Kim HH, Ryu KH (2014) Simultaneous multiplex PCR detection of seven cucurbit-infecting viruses. J Virol Methods 206:133–139

    Article  CAS  PubMed  Google Scholar 

  37. Jeon E, Hyeon JE, Eun LS, Park BS, Kim SW, Lee J, Han SO (2009) Cellulosic alcoholic fermentation using recombinant Saccharomyces cerevisiae engineered for the production of Clostridium cellulovorans endoglucanase and Saccharomycopsis fibuligera β-glucosidase. FEMS Microbiol Lett 301:130–136

    Article  CAS  PubMed  Google Scholar 

  38. Furtado A, Lupoi JS, Hoang NV, Healey A, Singh S, Simmons BA, Henry RJ (2014) Modifying plants for biofuel and biomaterial production. Plant Biotechnol J 12:1246–1258

    Article  CAS  PubMed  Google Scholar 

  39. Willis JD, Mazarei M, Stewart CN Jr (2016) Transgenic plant-produced hydrolytic enzymes and the potential of insect gut-derived hydrolases for biofuels. Front Plant Sci 7:675

    PubMed  PubMed Central  Google Scholar 

  40. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  CAS  PubMed  Google Scholar 

  41. Biswas GCG, Ransom C, Sticklen M (2006) Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci 171:617–623

    Article  CAS  Google Scholar 

  42. Fan Z, Yuan L (2010) Production of multifunctional chimaeric enzymes in plants: a promising approach for degrading plant cell wall from within. Plant Biotechnol J 8:308–315

    Article  CAS  PubMed  Google Scholar 

  43. Ziegelhoffer T, Raasch JA, Austin-Phillips S (2009) Expression of Acidothermus cellulolyticus E1 endo-β-1, 4-glucanase catalytic domain in transplastomic tobacco. Plant Biotechnol J 7:527–536

    Article  CAS  PubMed  Google Scholar 

  44. Tatineni S, Kovacs F, French R (2014) Wheat streak mosaic virus infects systemically despite extensive coat protein deletions: identification of virion assembly and cell-to-cell movement determinants. J Vrol 88:1366–1380

    Article  Google Scholar 

  45. Chapman S, Kavanagh T, Baulcombe D (1992) Potato virus X as a vector for gene expression in plants. Plant J 2:549–557

    CAS  PubMed  Google Scholar 

  46. Canizares MC, Nicholson L, Lomonossoff GP (2005) Use of viral vectors for vaccine production in plants. Immunol Cell Biol 88:263–270

    Article  Google Scholar 

  47. Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotechnol Adv 28:427–435

    Article  CAS  PubMed  Google Scholar 

  48. Dana EM, Guamet JJ (2014) Senescence-related changes in the leaf apoplast. J Plant Growth Regul 33:44–55

    Article  Google Scholar 

  49. Martinez DE, Guiamet JJ (2014) Senescence-related changes in the leaf apoplast. J Plnat Growth Regul 33:44–55

    Article  CAS  Google Scholar 

  50. Nooden LD, Guiamet JJ, John J (1997) Senescence mechanism. Physiol Plant 101:746–753

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Sung Ok Han (Korea University, South Korea) for the EngD clone. We also thank Dr. Mi Yeon Lee (University of California, Berkeley, California, USA) for helpful advice. This study was supported in part by Grants (2014R1A1A2058716, 2014M3A9B8022821, and 2015R1D1A1A01060614) from the National Research Foundation in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Hyun Ryu.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, E.G., Ryu, K.H. A pepper mottle virus-based vector enables systemic expression of endoglucanase D in non-transgenic plants. Arch Virol 162, 3717–3726 (2017). https://doi.org/10.1007/s00705-017-3539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3539-2

Navigation