Skip to main content

Advertisement

Log in

Regulation of the viral life cycle by murine gammaherpesvirus 68 microRNAs

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

γ-Herpesviruses (γHV) such as Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus are important human pathogens involved in lymphoproliferation and tumorigenesis. Murine gammaherpesvirus 68 (MHV-68, γHV-68) is an effective model for the study of γHV pathogenesis and host-virus interaction because it is closely related to human γHV. Similarly to human γHV, MHV-68 encodes 15 microRNAs (miRNAs). Although their functions remain unknown, they are thought to regulate the viral life cycle or host-virus interactions, similarly to other human γHV. Herein, we established stable cell lines expressing MHV-68 miRNAs and investigated the role of MHV-68 miRNAs in the regulation of viral life cycle. We found that mghv-miR-M1-1, -3, -5, -7, -8, -9, -10, -11, -13, and -15 repressed MHV-68 lytic replication by down-regulating expression of the replication and transcription activator (RTA) gene, whereas mghv-miR-M1-2, -4, -6, and -12 induced lytic replication by up-regulating RTA. We confirmed that the decrease in viral replication caused by mghv-miR-M1-1 was abolished by inhibition of miRNA expression via miRNA inhibitor treatment. In addition, we observed that mghv-miR-M1-1 down-regulated c-Jun indirectly and decreased cytokine production, suggesting that mghv-miR-M1-1 may inhibit MHV-68 lytic replication by inhibiting the activator protein 1 (AP-1) signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blasdell K, McCracken C, Morris A, Nash AA, Begon M, Bennett M, Stewart JP (2003) The wood mouse is a natural host for Murid herpesvirus 4. J Gen Virol 84:111–113

    Article  CAS  PubMed  Google Scholar 

  2. Rajcani J, Blaskovic D, Svobodova J, Ciampor F, Huckova D, Stanekova D (1985) Pathogenesis of acute and persistent murine herpesvirus infection in mice. Acta Virol 29:51–60

    CAS  PubMed  Google Scholar 

  3. Simas JP, Efstathiou S (1998) Murine gammaherpesvirus 68: a model for the study of gammaherpesvirus pathogenesis. Trends Microbiol 6:276–282

    Article  CAS  PubMed  Google Scholar 

  4. Brooks L, Yao QY, Rickinson AB, Young LS (1992) Epstein-Barr virus latent gene transcription in nasopharyngeal carcinoma cells: coexpression of EBNA1, LMP1, and LMP2 transcripts. J Virol 66:2689–2697

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    Article  CAS  PubMed  Google Scholar 

  6. Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, Chang Y (1995) In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86:2708–2714

    CAS  PubMed  Google Scholar 

  7. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L et al (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86:1276–1280

    CAS  PubMed  Google Scholar 

  8. Wu TT, Usherwood EJ, Stewart JP, Nash AA, Sun R (2000) Rta of murine gammaherpesvirus 68 reactivates the complete lytic cycle from latency. J Virol 74:3659–3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu TT, Tong L, Rickabaugh T, Speck S, Sun R (2001) Function of Rta is essential for lytic replication of murine gammaherpesvirus 68. J Virol 75:9262–9273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999) Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 73:2232–2242

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ebrahimi B, Dutia BM, Roberts KL, Garcia-Ramirez JJ, Dickinson P, Stewart JP, Ghazal P, Roy DJ, Nash AA (2003) Transcriptome profile of murine gammaherpesvirus-68 lytic infection. J Gen Virol 84:99–109

    Article  CAS  PubMed  Google Scholar 

  12. Gwack Y, Nakamura H, Lee SH, Souvlis J, Yustein JT, Gygi S, Kung HJ, Jung JU (2003) Poly(ADP-ribose) polymerase 1 and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol 23:8282–8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown HJ, Song MJ, Deng H, Wu TT, Cheng G, Sun R (2003) NF-kappaB inhibits gammaherpesvirus lytic replication. J Virol 77:8532–8540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gwack Y, Byun H, Hwang S, Lim C, Choe J (2001) CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi’s sarcoma-associated herpesvirus open reading frame 50. J Virol 75:1909–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang SE, Wu FY, Yu Y, Hayward GS (2003) CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J Virol 77:9590–9612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Feng J, Chen S, Peng L, He WW, Qi J, Deng H, Sun R (2010) Tpl2/AP-1 enhances murine gammaherpesvirus 68 lytic replication. J Virol 84:1881–1890

    Article  CAS  PubMed  Google Scholar 

  17. Liang D, Gao Y, Lin X, He Z, Zhao Q, Deng Q, Lan K (2011) A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon. Cell Res 21:793–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  CAS  PubMed  Google Scholar 

  20. Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome in plants. Bioinformatics 27:2614–2615

    CAS  PubMed  Google Scholar 

  21. Li Z, Chen X, Li L, Liu S, Yang L, Ma X, Tang M, Bode AM, Dong Z, Sun L, Cao Y (2012) EBV encoded miR-BHRF1-1 potentiates viral lytic replication by downregulating host p53 in nasopharyngeal carcinoma. Int J Biochem Cell Biol 44:275–279

    Article  CAS  PubMed  Google Scholar 

  22. Lei X, Bai Z, Ye F, Xie J, Kim CG, Huang Y, Gao SJ (2010) Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA. Nat Cell Biol 12:193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81:12836–12845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, Branch D, Romano M, Kearney P, Oates J, Plaisance K, Renne R, Kaleeba J, Parsons C (2010) Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog 6:e1000742

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dolken L, Malterer G, Erhard F, Kothe S, Friedel CC, Suffert G, Marcinowski L, Motsch N, Barth S, Beitzinger M, Lieber D, Bailer SM, Hoffmann R, Ruzsics Z, Kremmer E, Pfeffer S, Zimmer R, Koszinowski UH, Grasser F, Meister G, Haas J (2010) Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 7:324–334

    Article  PubMed  Google Scholar 

  26. Boss IW, Nadeau PE, Abbott JR, Yang Y, Mergia A, Renne R (2011) A Kaposi’s sarcoma-associated herpesvirus-encoded ortholog of microRNA miR-155 induces human splenic B-cell expansion in NOD/LtSz-scid IL2Rgammanull mice. J Virol 85:9877–9886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    Article  CAS  PubMed  Google Scholar 

  28. Zhu JY, Strehle M, Frohn A, Kremmer E, Hofig KP, Meister G, Adler H (2010) Identification and analysis of expression of novel microRNAs of murine gammaherpesvirus 68. J Virol 84:10266–10275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Reese TA, Xia J, Johnson LS, Zhou X, Zhang W, Virgin HW (2010) Identification of novel microRNA-like molecules generated from herpesvirus and host tRNA transcripts. J Virol 84:10344–10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xia J, Zhang W (2012) Noncanonical microRNAs and endogenous siRNAs in lytic infection of murine gammaherpesvirus. PLoS One 7:e47863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeon C, Kang S, Park S, Lim K, Hwang KW, Min H (2011) T Cell stimulatory effects of korean red ginseng through modulation of myeloid-derived suppressor cells. J Ginseng Res 35:462–470

    Article  PubMed  PubMed Central  Google Scholar 

  32. Park S, Kang S, Min KH, Woo Hwang K, Min H (2013) Age-associated changes in microRNA expression in bone marrow derived dendritic cells. Immunol Invest 42:179–190

    Article  CAS  PubMed  Google Scholar 

  33. Martinez-Guzman D, Rickabaugh T, Wu TT, Brown H, Cole S, Song MJ, Tong L, Sun R (2003) Transcription program of murine gammaherpesvirus 68. J Virol 77:10488–10503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jia Q, Chernishof V, Bortz E, McHardy I, Wu TT, Liao HI, Sun R (2005) Murine gammaherpesvirus 68 open reading frame 45 plays an essential role during the immediate-early phase of viral replication. J Virol 79:5129–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang SE, Wu FY, Chen H, Shamay M, Zheng Q, Hayward GS (2004) Early activation of the Kaposi’s sarcoma-associated herpesvirus RTA, RAP, and MTA promoters by the tetradecanoyl phorbol acetate-induced AP1 pathway. J Virol 78:4248–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stahl JA, Paden CR, Chavan SS, MacLeod V, Edmondson RD, Speck SH, Forrest JC (2012) Amplification of JNK signaling is necessary to complete the murine gammaherpesvirus 68 lytic replication cycle. J Virol 86:13253–13262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie J, Pan H, Yoo S, Gao SJ (2005) Kaposi’s sarcoma-associated herpesvirus induction of AP-1 and interleukin 6 during primary infection mediated by multiple mitogen-activated protein kinase pathways. J Virol 79:15027–15037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Farrell PJ, Rowe DT, Rooney CM, Kouzarides T (1989) Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. Embo J 8:127–132

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan H, Xie J, Ye F, Gao SJ (2006) Modulation of Kaposi’s sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J Virol 80:5371–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rooney CM, Rowe DT, Ragot T, Farrell PJ (1989) The spliced BZLF1 gene of Epstein-Barr virus (EBV) transactivates an early EBV promoter and induces the virus productive cycle. J Virol 63:3109–3116

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Feldman ER, Kara M, Coleman CB, Grau KR, Oko LM, Krueger BJ, Renne R, van Dyk LF, Tibbetts SA (2014) Virus-encoded microRNAs facilitate gammaherpesvirus latency and pathogenesis in vivo. Mbio 5:e00914–e00981

    Article  Google Scholar 

  42. Diebel KW, Oko LM, Medina EM, Niemeyer BF, Warren CJ, Claypool DJ, Tibbetts SA, Cool CD, Clambey ET, van Dyk LF (2015) Gammaherpesvirus small noncoding RNAs are bifunctional elements that regulate infection and contribute to virulence in vivo. Mbio 6:e01614–e01670

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF) funded by the Korean Government Ministry of Education, Science and Technology (MEST) [NRF-2010-0005856 to H.M.].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moon Jung Song or Hyeyoung Min.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Jeon, C., Im, K. et al. Regulation of the viral life cycle by murine gammaherpesvirus 68 microRNAs. Arch Virol 162, 657–667 (2017). https://doi.org/10.1007/s00705-016-3150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3150-y

Keywords

Navigation