Skip to main content

Advertisement

Log in

Discovery of herpesviruses in Canadian wildlife

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Herpesviruses (HVs) have a wide range of hosts in the animal kingdom. The result of infection with HVs can vary from asymptomatic to fatal diseases depending on subtype, strain, and host. To date, little is known about HVs naturally circulating in wildlife species and the impact of these viruses on other species. In our study, we used genetic and comparative approaches to increase our understanding of circulating HVs in Canadian wildlife. Using nested polymerase chain reaction targeting a conserved region of the HV DNA polymerase gene, we analyzed material derived from wildlife of western and northern Canada collected between February 2009 and Sept 2014. For classification of new virus sequences, we compared our viral sequences with published sequences in GenBank to identify conserved residues and motifs that are unique to each subfamily, alongside phylogenetic analysis. All alphaherpesviruses shared a conserved tryptophan (W856) and tyrosine (Y880), betaherpesviruses all shared a serine (S836), and gammaherpesviruses had a conserved glutamic acid (E835). Most of our wildlife HV sequences grouped together with HVs from taxonomically related host species. From Martes americana, we detected previously uncharacterized alpha- and beta-herpesviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McGeoch DJ, Gatherer D (2005) Integrating reptilian herpesviruses into the family Herpesviridae. J Virol 79:725–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McGeoch DJ, Rixon FJ, Davison AJ (2006) Topics in herpesvirus genomics and evolution. Virus Res 117:90–104

    Article  CAS  PubMed  Google Scholar 

  3. Wang N, Baldi PF, Gaut BS (2007) Phylogenetic analysis, genome evolution and the rate of gene gain in the Herpesviridae. Mol Phylogenet Evol 43(3):1066–1075

    Article  CAS  PubMed  Google Scholar 

  4. Blake N (2010) Immune evasion by gammaherpesvirus genome maintenance proteins. J Gen Virol 91(4):829–846

    Article  CAS  PubMed  Google Scholar 

  5. McGeoch DJ, Cook S, Dolan A, Jamieson FE, Telford EA (1995) Molecular phylogeny and evolutionary timescale for the family of mammalian herpesviruses. J Mol Biol 247:443–458

    Article  CAS  PubMed  Google Scholar 

  6. McGeoch DJ, Dolan A, Ralph AC (2000) Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74:10401–10406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wald A, Corey L (2007) Persistence in the population: epidemiology, transmission. In: Arvin A et al (ed) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge, ch 36

  8. Lankester F, Lugelo A, Kazwala R, Keyyu J, Cleaveland S, Yoder J (2015) The economic impact of malignant catarrhal fever on pastoralist livelihoods. PLoS One 10(1):e0116059

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mlilo D, Mhlanga M, Mwembe R, Sisito G, Moyo B, Sibanda B (2015) The epidemiology of malignant catarrhal fever (MCF) and contribution to cattle losses in farms around Rhodes Matopos National Park, Zimbabwe. Trop Anim Health Prod 47(5):989–994

    Article  PubMed  Google Scholar 

  10. Tessaro SV, Deregt D, Dzus E, Rohner C, Smith K, Gaboury T (2005) Herpesvirus infection in woodland caribou in Alberta, Canada. J Wild Dis 41(4):803–805

    Article  CAS  Google Scholar 

  11. Garver KA, Al-Hussinee L, Hawley LM, Schroeder T, Edes S, LePage V et al (2010) Mass mortality associated with koi herpesvirus in wild common carp in Canada. J Wild Dis 46(4):1242–1251

    Article  CAS  Google Scholar 

  12. Himworth CG, Haulena M, Lambourn DM, Gaydos JK, Huggins J, Calambokidis J et al (2010) Pathology and epidemiology of Phocid herpesvirus-1 in wild and rehabilitating harbor seals (Phoca vitulina richardsi) in the northeastern Pacific. J Wild Dis 46(3):1046–1051

    Article  CAS  Google Scholar 

  13. Gailbreath K, Oaks L (2008) Herpesviral inclusion body disease in owls and falcons is caused by the pigeon herpesvirus (Columbid herpesvirus 1). J Wildl Dis 44:427–433

    Article  CAS  PubMed  Google Scholar 

  14. Rose N, Warren AL, Whiteside D, Bidulka J, Robinson JH, Illanes O, Brookfield C (2012) Columbid herpesvirus-1 mortality in great horned owls (Bubo virginianus) from Calgary, Alberta. Can Vet J 53:265–268

    PubMed  PubMed Central  Google Scholar 

  15. Brown M, Moore L, McMahon B, Powell D, LaBute M, Hyman JM et al (2015) Constructing rigorous and broad biosurveillance networks for detecting emerging zoonotic outbreaks. PLoS One 10(5):e0124037

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vandevanter DR, Warrener P, Bennett L, Schultz ER, Coulter S, Garber RL et al (1996) Detection and analysis of diverse herpesviral species by consensus primer PCR. J Clin Microbiol 34(7):1666–1671

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bennett N, Götte M (2013) Utility of bacteriophage RB69 polymerase gp43 as a surrogate enzyme for herpesvirus orthologs. Viruses 5:54–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 28(43):D222. doi:10.1093/nar/gku1221

    Article  Google Scholar 

  19. Ye L-B, Huang E (1993) In vitro expression of the human cytomegalovirus DNApolymerase gene: Effects of sequence alterations on enzyme activity. J. Virol 67:6339–6347

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinf 28(12):1647–1649

    Article  Google Scholar 

  21. NCBI (2013) National Center for Biotechnology Information BLAST home. http://blast.ncbi.nlm.nih.gov/Blast.cgi

  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high 180 throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stamatakis A (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. Bioinf 30(9):1312–1313

    Article  CAS  Google Scholar 

  24. Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS (2008) Automatic online tuning for fast Gaussian summation. Adv Neur Inf Proc Sys (NIPS). http://sourceforge.net/projects/figtree/

  25. Li H, Gailbreath K, Flach EJ, Taus NS, Cooley J, Keller J et al (2005) A novel subgroup of rhadinoviruses in ruminants. J Gen Virol 86:3021–3026

    Article  CAS  PubMed  Google Scholar 

  26. das Neves CG, Ihlebaek HM, Skjerve E, Hemmingsen W, Li H, Tryland M (2013) Gammaherpesvirus infection in semi-domesticated reindeer (Rangifer tarandus tarandus): a cross-sectional, serologic study in northern Norway. J Wild Dis 49(2):261–269

  27. COSEWIC (2011) Designatable units for caribou (Rangifer tarandus) in Canada. Committee on the Status of Endangered Wildlife in Canada: Ottawa, p 88. http://www.cosewic.gc.ca/eng/sct12/COSEWIC_Caribou_DU_Report_23Dec2011.pdf

  28. Yannic G, Pellissier L, Ortego J, Lecomte N, Couturier S, Cuyler C (2014) Genetic diversity in caribou linked to past and future climate change. Nat Clim Change 4:132–137

    Article  Google Scholar 

  29. Levi T, Wilmers CC (2012) Wolves-coyotes-foxes: a cascade among carnivores. Ecology 93(4):921–929

    Article  PubMed  Google Scholar 

  30. Broquet T, Johnson CA, Petit E, Thompson I, Burel F, Fryxell JM (2006) Dispersal and genetic structure in the American marten, Martes americana. Mol Ecol 15(6):1689–1697

    Article  CAS  PubMed  Google Scholar 

  31. Larder BA, Kemp SD, Darby G (1987) Related functional domains in virus DNA polymerases. EMBO J 6(1):169–175

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Plumb JA, Wright LD, Jones VL (1973) Survival of channel catfish virus in chilled, frozen, and decomposing channel catfish. Progress Fish Culturist 35:170–172

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of the Canadian Cooperative Wildlife Health Centre and the pathology department at the University of Calgary Spy Hill Campus for their help and expertise in animal sample collection during necropsy. Caribou samples were collected through CARMA project; some marten samples were collected by the youth of the Sahtú region as part of an NSERC PromoScience outreach program. Finally, Alasdair Veitch, Ale Massolo, and Cynthia Kashivakura participated largely in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chimoné S. Dalton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

This study was funded by University Research Grants Committee (URGC) Seed Grant Program, University of Calgary, Alberta, Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalton, C.S., van de Rakt, K., Fahlman, Å. et al. Discovery of herpesviruses in Canadian wildlife. Arch Virol 162, 449–456 (2017). https://doi.org/10.1007/s00705-016-3126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3126-y

Keywords

Navigation