Skip to main content

Advertisement

Log in

The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In this work, we showed that cell death induced by a recombinant (vAcNSs) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) expressing the silencing suppressor (NSs) protein of Tomato spotted wilt virus (TSWV) was enhanced on permissive and semipermissive cell lines. The expression of a heterologous gene (firefly luciferase) during co-infection of insect cells with vAcNSs and a second recombinant baculovirus (vAgppolhfluc) was shown to increase when compared to single vAgppolhfluc infections. Furthermore, the vAcNSs mean time-to-death values were significantly lower than those for wild-type AcMNPV on larvae of Spodoptera frugiperda and Anticarsia gemmatalis. These results showed that the TSWV-NSs protein could efficiently increase heterologous protein expression in insect cells as well as baculovirus pathogenicity and virulence, probably by suppressing the gene-silencing machinery in insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, Vance VB (1998) A viral suppressor of gene silencing in plants. P Natl Acad Sci USA 95:13079–13084

    Article  CAS  Google Scholar 

  2. Ardisson-Araujo DMP, Morgado FS, Schwarts EF, Corzo G, Ribeiro BM (2013) A new theraphosid spider toxin causes early insect cell death by necrosis when expressed in vitro during recombinant baculovirus infection. Plos One 8:e84404

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bucher E, Hemmes H, de Haan P, Goldbach R, Prins M (2004) The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J Gen Virol 85:983–991

    Article  CAS  PubMed  Google Scholar 

  4. Burden JP, Hails RS, Windass JD, Suner MM, Cory JS (2000) Infectivity, speed of kill, and productivity of a baculovirus expressing the itch mite toxin txp-1 in second and fourth instar larvae of Trichoplusia ni. J Invertebr Pathol 75:226–236

    Article  CAS  PubMed  Google Scholar 

  5. Blakqori G, Delhaye S, Habjan M, Blair CD, Sanchez-VargasI Olson KE, Attarzadeh-Yazdi G, Fragkoudis R, Kohl A, Kalinke U, Weiss S, Michiels T, Staeheli P, Weber F (2007) La Crosse bunyavirus nonstructural protein NSs serves to suppress the type interferon system of mammalian hosts. J Virol 81:4991–4999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chen Y, Zhong S, Fei Z, Hashimoto Y, Xiang JZ, Zhang S, Blissard GW (2013) The transcriptome of the baculovirus Autographa californica multiple nucleopolyhedrovirus in Trichoplusiani cells. J Virol 87:6391–6405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chikhalya A, Luu DD, Carrera M, De La Cruz A, Torres M, Martinez EN, Chen T, Stephens KD, Haas-Stapleton EJ (2009) Pathogenesis of Autographa californica multiple nucleopolyhedrovirus in fifth-instar Anticarsia gemmatalis larvae. J Gen Virol 90:2023–2032

    Article  CAS  PubMed  Google Scholar 

  8. Clarke TE, Clem RJ (2002) Lack of involvement of haemocytes in the establishment and spread of infection in Spodoptera frugiperda larvae infected with the baculovirus Autographa californica M nucleopolyhedrovirus by intrahaemocoelic injection. J Gen Virol 83:1565–1572

    Article  CAS  PubMed  Google Scholar 

  9. Cordeiro BA, Tibúrcio VH, Hallwass M, Paes HC, Ribeiro BM, Báo SN (2008) Structural and ultrastructural alterations of Malpighian tubules of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae) larvae infected with different Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) recombinant viruses. J Invertebr Pathol 98:7–19

    Article  PubMed  Google Scholar 

  10. Fath-Goodin A, Kroemer J, Martin S, Reeves K, Webb BA (2006) Polydnavirus genes that enhance the baculovirus expression vector system. Adv Virus Res 68:75–90

    Article  CAS  PubMed  Google Scholar 

  11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  12. Finney DJ (1971) Probit analysis. Cambridge University Press, New York, p 333

    Google Scholar 

  13. Flores-Jasso CF, Valdes VJ, Sampieri A, Valadez-Graham V, Recillas-Targa F, Vaca L (2004) Silencing structural and nonstructural genes in baculovirus by RNA interference. Virus Res 102:75–84

    Article  CAS  PubMed  Google Scholar 

  14. Friesen PD, Miller LK (1985) Temporal regulation of baculovirus RNA: overlapping early and late transcripts. J Virol 54:392–400

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Garcia S, Billecocq A, Crance JM, Prins M, Garin D (2006) Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J Gen Virol 87:1985–1989

    Article  CAS  PubMed  Google Scholar 

  16. Gershburg E, Stockholm D, Froy O, Rashi S, Gurevitz M, Chejanovsky N (1998) Baculovirus-mediated expression of a scorpion depressant toxin improves the insecticidal efficacy achieved with excitatory toxins. FEBS Lett 422:132–136

    Article  CAS  PubMed  Google Scholar 

  17. Granados RR, Li GX, Derksen ACG, McKenna KA (1994) A new insect-cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus. J Invertebr Pathol 64:260–266

    Article  Google Scholar 

  18. Gramkow AW, Perecmanis S, Sousa RL, Noronha EF, Felix R, Nagata T, Ribeiro BM (2010) Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Virol J 7:143

    Article  PubMed Central  PubMed  Google Scholar 

  19. Greene GL, Leppla NC, Dickerson WA (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. J Econ Entomol 69:487–548

    Article  Google Scholar 

  20. Jayachandran B, Hussain M, Asgari S (2012) RNA interference as a cellular defense mechanism against the DNA virus, baculovirus. J Virol 24:13729–13734

    Article  Google Scholar 

  21. Jinn T, Tu W, Lu C, Tzen J (2006) Enhancing insecticidal efficacy of baculovirus by early expressing an insect neurotoxin, LqhIT2, in infected Trichoplusia ni larvae. Appl Micro Biochem 72:1247–1253

    Article  CAS  Google Scholar 

  22. Leora Software (1980) Polo PC: a user guide to probit or logit analysis. LeOra Software, Berkeley

    Google Scholar 

  23. Lee HH, Miller LK (1978) Isolation of genotypic variants of Autographa californica nuclear polyhedrosis virus. J Virol 27:754–767

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Lubbert H, Doerfler W (1984) Transcription of overlapping sets of RNAs from the genome of Autographa californica nuclear polyhedrosis virus: a novel method for mapping RNAs. JVirol 52:255–265

    CAS  Google Scholar 

  25. Kainulainen M, Habjan M, Hubel P, Busch L, Lau S, Colinge J, Superti-Furga G, Pichlmair A, Weber F (2014) Virulence factor NSs of Rift valley fever firus recruits the F-Box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH. J Virol 88:3464–3473

    Article  PubMed Central  PubMed  Google Scholar 

  26. Margaria P, Bosco L, Vallino M, Ciuffo M, Mautino GC, Tavella L, Turina M (2014) The NSs protein of Tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. J. Virol 88:5788–5802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Medeiros RB, de Resende OR, de Avila AC (2004) The plant virus Tomato spotted wilt tospovirus activates the immune system of its main insect vector, Frankliniella occidentalis. J Virol 78:4976–4982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Michael RG, Sambrook J (2001) Molecular cloning A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  29. Miller LK, Lu A (1997) The molecular basis of baculovirus host range. In: Miller LK (ed) The baculoviruses. Plenum Press, New York, pp 217–235

    Chapter  Google Scholar 

  30. Molnár A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) MiRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129

    Article  PubMed  Google Scholar 

  31. Morales L, Moscardi F, Sosa-Gómez DR, Paro FE, Soldorio IL (2001) Fluorescent brighteners improve Anticarsia gemmatalis (Lepidoptera: Noctuidae) nucleopolyhedrovirus (AgMNPV) activity on AgMNPV susceptible and resistant strains of the insect. Biol Control 20:247–253

    Article  CAS  Google Scholar 

  32. Oliveira VC, Bartasson L, de Castro ME, Corrêa JR, Ribeiro BM, Resende RO (2011) A silencing suppressor protein (NSs) of a tospovirus enhances baculovirus replication in permissive and semipermissive insect cell lines. Virus Res 155:259–267

    Article  CAS  PubMed  Google Scholar 

  33. O’Reilly DR, Miller LK (1991) Improvement of a baculovirus pesticide by deletion of the egt gene. Biotechnology 9:1086–1089

    Article  Google Scholar 

  34. O’Reilly DR (1992) Baculovirus expression vectors. A laboratory manual. Oxford University Press, New York

    Google Scholar 

  35. Pinedo FJR, Moscardi F, Luque T, Olszewski JA, Ribeiro BM (2003) Inactivation of the ecdysteroid UDP-glucosyltransferase (egt) gene of Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) improves its virulence towards its insect host. Biol Control 27:336–344

    Article  CAS  Google Scholar 

  36. Ribeiro BM, Gatti CD, Costa MH, Moscardi F, Maruniak JE, Possee RD, Zanotto PM (2001) Construction of a recombinant Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV-2D) harbouring the β-galactosidase gene. Arch Virol 146:1355–1367

    Article  CAS  PubMed  Google Scholar 

  37. Sieburth PJ, Maruniak JE (1988) Susceptibility of an established cell line of Anticarsia gemmatalis (Lepidoptera, Noctuidae) to three nuclear polyhedrosis viruses. J Invertebr Pathol 52:453–458

    Article  Google Scholar 

  38. Schmidt O, Theopold U, Beckage NE (2008) Insect and vertebrate immunity: key similarities versus differences. In: Beckage Nancy E (ed) Insect immunology. Academic Press/Elsevier, San Diego

    Google Scholar 

  39. Sun XL, Wu D, Sun XC, Jin L, Ma Y, Bonning BC, Peng HY, Hu ZH (2009) Impact of Helicoverpa armigera nucleopolyhedroviruses expressing a cathepsin L-like protease on target and non target insect species on cotton. Biol Control 49:77–83

    Article  CAS  Google Scholar 

  40. Szemiel AM, Failloux A-B, Elliott RM (2012) Role of Bunyamwera Orthobunyavirus NSs protein in infection of mosquito cells. Plos Negl Trop Dis 6:e1823

    Article  PubMed Central  PubMed  Google Scholar 

  41. KnippenbergI Van, Carlton-Smith C, Elliott RM (2002) The N-terminus of Bunyamwera Orthobunyavirus NSs protein is essential for interferon antagonism. J Gen Virol 91:2002–2006

    Article  Google Scholar 

  42. Van Mierlo JT, van Cleef KW, van RijR RP (2011) Defense and counter defense in the RNAi-based antiviral immune system in insects. In: Ronald P, van Rij RP (eds) Antiviral RNAi: concepts, methods, and applications, methods in molecular biology. Springer Science Business Media, New Yrok, pp 220–247

    Google Scholar 

  43. Venter PA, Schneemann A (2008) Recent insights into the biology and biomedical applications of Flock House virus. Cell Mol Life Sci 17:2675–2687

    Article  Google Scholar 

  44. Tang XX, Sun XL, Pu GQ, Wang WB, Zhang CX, Zhu J (2011) Expression of a neurotoxin gene improves the insecticidal activity of Spodoptera litura nucleopolyhedrovirus (SpltNPV). Virus Res 159:51–56

    Article  CAS  PubMed  Google Scholar 

  45. Yokoyama N, Hirata M, Ohtsuka K, Nishiyama Y, Fujii K, Fujita M, Kuzushima K, Kiyono T, Tsurumi T (2000) Co-expression of human chaperones Hsp70 and Hsdj or Hsp40 cofactor increases solubility of overexpressed target proteins in insect cells. Biochim Biophys Acta 1493:119–124

    Article  CAS  PubMed  Google Scholar 

  46. Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding W (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wijkamp I, van Lent J, Kormelink R, Goldbach R, Peters D (1993) Multiplication of Tomato spotted wilt virus in its insect vector, Frankliniella occidentalis. J Gen Virol 74:341–349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Postdoctoral National Program (PNPD) and the University of Brasília, Graduate Program in Molecular Biology. It was financed by CAPES (Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior) CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPDF (Fundação de Apoio à Pesquisa do Distrito Federal). We would like to thank Dra. Maria Elita Batista de Castro, Embrapa Recursos Genéticos e Biotecnologia-CENARGEN, Brasília-DF, for providing the A. gemmatalis and S. frugiperda larvae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virgínia Carla de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, V.C., da Silva Morgado, F., Ardisson-Araújo, D.M.P. et al. The silencing suppressor (NSs) protein of the plant virus Tomato spotted wilt virus enhances heterologous protein expression and baculovirus pathogenicity in cells and lepidopteran insects. Arch Virol 160, 2873–2879 (2015). https://doi.org/10.1007/s00705-015-2580-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2580-2

Keywords

Navigation