Skip to main content

Advertisement

Log in

Quantification of HIV-based lentiviral vectors: influence of several cell type parameters on vector infectivity

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A human immunodeficiency virus type (HIV-1)-based lentiviral vector pseudotyped with the vesicular stomatitis virus envelope glycoprotein and encoding the GFP reporter gene was used to evaluate different methods of lentiviral vector titration. GFP expression, viral DNA quantification and the efficiency of vector DNA integration were assayed after infection of conventional HIV-1-permissive cell lines and human primary adult fibroblasts with the vector. We found that vector titers based on GFP expression determined by flow cytometry may vary by more than 50-fold depending on the cell type and the promoter-cell combination used. Interestingly, we observed that the viral integration process in primary HDFa cells was significantly more efficient compared to that in SupT1 or 293T cells. We propose that determination of the amount of integrated viral DNA by quantitative PCR be used in combination with the reporter gene expression assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lillico S, Vasey D, King T, Whitelaw B (2011) Lentiviral transgenesis in livestock. Transgenic Res 20(3):441–442

    Article  PubMed  CAS  Google Scholar 

  2. Pfeifer A (2004) Lentiviral transgenesis. Transgenic Res 13(6):513–522

    Article  PubMed  CAS  Google Scholar 

  3. Dropulic B (2011) Lentiviral vectors: their molecular design, safety, and use in laboratory and preclinical research. Hum Gene Ther 22(6):649–657

    Article  PubMed  CAS  Google Scholar 

  4. Matrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18(3):477–490

    Article  PubMed  CAS  Google Scholar 

  5. Pauwels K, Gijsbers R, Toelen J, Schambach A, Willard-Gallo K, Verheust C, Debyser Z, Herman P (2009) State-of-the-art lentiviral vectors for research use: risk assessment and biosafety recommendations. Curr Gene Ther 9(6):459–474

    Article  PubMed  CAS  Google Scholar 

  6. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875

    Article  PubMed  CAS  Google Scholar 

  7. Yu SF, von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U, Anderson WF, Wagner EF, Gilboa E (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci USA 83(10):3194–3198

    Article  PubMed  CAS  Google Scholar 

  8. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72(12):9873–9880

    PubMed  CAS  Google Scholar 

  9. Sirven A, Pflumio F, Zennou V, Titeux M, Vainchenker W, Coulombel L, Dubart-Kupperschmitt A, Charneau P (2000) The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 96(13):4103–4110

    PubMed  CAS  Google Scholar 

  10. Van Maele B, De Rijck J, De Clercq E, Debyser Z (2003) Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction. J Virol 77(8):4685–4694

    Article  PubMed  Google Scholar 

  11. Schambach A, Bohne J, Baum C, Hermann FG, Egerer L, von Laer D, Giroglou T (2006) Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Ther 13(7):641–645

    Article  PubMed  CAS  Google Scholar 

  12. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73(4):2886–2892

    PubMed  CAS  Google Scholar 

  13. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5(4):387–398

    Article  PubMed  CAS  Google Scholar 

  14. Frecha C, Levy C, Cosset FL, Verhoeyen E (2010) Advances in the field of lentivector-based transduction of T and B lymphocytes for gene therapy. Mol Ther 18:1748–1757

    Article  PubMed  CAS  Google Scholar 

  15. Salmon P, Trono D (2007) Production and titration of lentiviral vectors. In: Jonathan L. Haines et al (eds) Current protocols in human genetics, Chapter 12: Unit 12.10

  16. Sastry L, Johnson T, Hobson MJ, Smucker B, Cornetta K (2002) Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9(17):1155–1162

    Article  PubMed  CAS  Google Scholar 

  17. Nair A, Xie J, Joshi S, Harden P, Davies J, Hermiston T (2008) A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors. J Virol Methods 153(2):269–272

    Article  PubMed  CAS  Google Scholar 

  18. Martin-Rendon E, White LJ, Olsen A, Mitrophanous KA, Mazarakis ND (2002) New methods to titrate EIAV-based lentiviral vectors. Mol Ther 5(5 Pt 1):566–570

    Article  PubMed  CAS  Google Scholar 

  19. Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R (2006) Comparison of lentiviral vector titration methods. BMC biotechnol 6:34

    Article  PubMed  Google Scholar 

  20. Brussel A, Delelis O, Sonigo P (2005) Alu-LTR real-time nested PCR assay for quantifying integrated HIV-1 DNA. Methods Mol Biol 304:139–154

    PubMed  CAS  Google Scholar 

  21. O’Doherty U, Swiggard WJ, Jeyakumar D, McGain D, Malim MH (2002) A sensitive, quantitative assay for human immunodeficiency virus type 1 integration. J Virol 76(21):10942–10950

    Article  PubMed  Google Scholar 

  22. Butler SL, Hansen MS, Bushman FD (2001) A quantitative assay for HIV DNA integration in vivo. Nat Med 7(5):631–634

    Article  PubMed  CAS  Google Scholar 

  23. Lizee G, Aerts JL, Gonzales MI, Chinnasamy N, Morgan RA, Topalian SL (2003) Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Hum Gene Ther 14(6):497–507

    Article  PubMed  CAS  Google Scholar 

  24. Zhang B, Metharom P, Jullie H, Ellem KA, Cleghorn G, West MJ, Wei MQ (2004) The significance of controlled conditions in lentiviral vector titration and in the use of multiplicity of infection (MOI) for predicting gene transfer events. Genet Vaccines Ther 2(1):6

    Article  PubMed  Google Scholar 

  25. Zamborlini A, Coiffic A, Beauclair G, Delelis O, Paris J, Koh Y, Magne F, Giron ML, Tobaly-Tapiero J, Deprez E, Emiliani S, Engelman A, de The H, Saib A (2011) Impairment of human immunodeficiency virus type-1 integrase SUMOylation correlates with an early replication defect. J Biol Chem 286(23):21013–21022

    Article  PubMed  CAS  Google Scholar 

  26. Ronfort C, Chebloune Y, Cosset FL, Faure C, Nigon VM, Verdier G (1995) Structure and expression of endogenous retroviral sequences in the permanent LMH chicken cell line. Poult Sci 74(1):127–135

    PubMed  CAS  Google Scholar 

  27. Frecha C, Costa C, Negre D, Gauthier E, Russell SJ, Cosset FL, Verhoeyen E (2008) Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood 112(13):4843–4852

    Article  PubMed  CAS  Google Scholar 

  28. Farley DC, Iqball S, Smith JC, Miskin JE, Kingsman SM, Mitrophanous KA (2007) Factors that influence VSV-G pseudotyping and transduction efficiency of lentiviral vectors-in vitro and in vivo implications. J Gene Med 9(5):345–356

    Article  PubMed  CAS  Google Scholar 

  29. Real G, Monteiro F, Burger C, Alves PM (2011) Improvement of lentiviral transfer vectors using cis-acting regulatory elements for increased gene expression. Appl Microbiol Biotechnol 91:1581–1591

    Article  PubMed  CAS  Google Scholar 

  30. Nara PL, Fischinger PJ (1988) Quantitative infectivity assay for HIV-1 and-2. Nature 332(6163):469–470

    Article  PubMed  CAS  Google Scholar 

  31. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650

    Article  PubMed  CAS  Google Scholar 

  32. Han Y, Wang X, Dang Y, Zheng YH (2008) Demonstration of a novel HIV-1 restriction phenotype from a human T cell line. PLoS One 3(7):e2796

    Article  PubMed  Google Scholar 

  33. Meehan AM, Poeschla EM (2010) Chromatin tethering and retroviral integration: recent discoveries and parallels with DNA viruses. Biochim Biophys Acta 1799(3–4):182–191

    PubMed  CAS  Google Scholar 

  34. Best S, Le Tissier P, Towers G, Stoye JP (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382(6594):826–829

    Article  PubMed  CAS  Google Scholar 

  35. Gao G, Guo X, Goff SP (2002) Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297(5587):1703–1706

    Article  PubMed  CAS  Google Scholar 

  36. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427(6977):848–853

    Article  PubMed  CAS  Google Scholar 

  37. Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451(7177):425–430

    Article  PubMed  CAS  Google Scholar 

  38. Strebel K, Luban J, Jeang KT (2009) Human cellular restriction factors that target HIV-1 replication. BMC Med 7:48

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. D. Trono (University of Geneva, Switzerland) for providing us the pWPXLd and pCMV-dR8.91 plasmids, Dr. D. Nègre (ENS Lyon, France) for the pCMV-VSV-G plasmid and help for the production of vector preparation. We are grateful to the “Genetic analysis and vectorology” and “Flow cytometry” platforms of UMS3444 BioSciences Gerland Lyon Sud. VG was supported by a doctorate fellowship from Cluster 10 (Infectiology) of the Région Rhône-Alpes. We also thank Pr. P. Boulanger for critical reading of the manuscript.

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Ronfort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gay, V., Moreau, K., Hong, SS. et al. Quantification of HIV-based lentiviral vectors: influence of several cell type parameters on vector infectivity. Arch Virol 157, 217–223 (2012). https://doi.org/10.1007/s00705-011-1150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1150-5

Keywords

Navigation