Skip to main content

Advertisement

Log in

Comparison of conventional and machine learning methods for bias correcting CMIP6 rainfall and temperature in Nigeria

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This research assesses the efficacy of thirteen bias correction methods, including traditional and machine learning-based approaches, in downscaling four chosen GCMs of Coupled Model Intercomparison Project 6 (CMIP6) in Nigeria. The 0.5° resolution gridded rainfall, maximum temperature (Tmx), and minimum temperature (Tmn) of the Climate Research Unit (CRU) for the period 1975 − 2014 was used as the reference. The Compromise Programming Index (CPI) was used to assess the performance of bias correction methods based on three statistical metrics. The optimal bias-correction technique was employed to rectify bias to project the spatiotemporal variations in rainfall, Tmx, and Tmn over Nigeria for two distinct future timeframes: the near future (2021–2059) and the distant future (2060–2099). The study's findings indicate that the Random Forest (RF) machine learning technique better corrects the bias of all three climate variables for the chosen GCMs. The CPI of RF for rainfall, Tmx, and Tmn were 0.62, 0.0, and 0.0, followed by the Power Transformation approach with CPI of 0.74, 0.36, and 0.29, respectively. The geographic distribution of rainfall and temperatures significantly improved compared to the original GCMs using RF. The mean bias-corrected projections from the multimodel ensemble of the GCMs indicated a rainfall increase in the near future, particularly in the north by 2.7–12.7%, while a reduction in the south in the far future by -3.3% to -10% for different SSPs. The temperature projections indicated a rise in the Tmx and Tm from 0.71 °C and 0.63 °C for SSP126 to 2.71 °C and 3.13 °C for SSP585. This work highlights the significance of comparing bias correction approaches to determine the most suitable approach for adjusting biases in GCM estimations for climate change research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All the data are available in the public domain at the links provided in the texts.

Code availability

The codes used for data processing can be provided on request to the corresponding author.

References

  • Adeaga O, Lawal O, Adedeji O, Akinbaloye O (2022) Assessment of vegetation cover dynamics in the agroecological Zones of Nigeria. Bull Geograph Phys Geograph Ser 22:19–32

    Article  Google Scholar 

  • Ahmad MH, Abubakar A, Ishak MY, Danhassan SS, Jiahua Z, Alatalo JM (2023) Modeling the influence of daily temperature and precipitation extreme indices on vegetation dynamics in Katsina State using statistical downscaling model (SDM). Ecol Ind 155:110979

    Article  Google Scholar 

  • Ahmed K, Sachindra DA, Shahid S, Iqbal Z, Nawaz N, Khan N (2020) Multimodel ensemble predictions of precipitation and temperature using machine learning algorithms. Atmos Res 236:104806

    Article  Google Scholar 

  • Ali S, Eum H-I, Cho J, Dan L, Khan F, Dairaku K, Shrestha ML, Hwang S, Nasim W, Khan IA (2019) Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmos Res 222:114–133

    Article  Google Scholar 

  • Amengual A, Homar V, Romero R, Alonso S, Ramis C (2012) A statistical adjustment of regional climate model outputs to local scales: application to Platja de Palma. Spain J Climate 25(3):939–957

    Article  ADS  Google Scholar 

  • Audu HO, Audu NL, Binbol JN, Gana EB (2013) Climate change and its implication on agriculture in Nigeria. Abuja Journal of Geography and Development 3(2):1–15. http://works.bepress.com/abujajournalofgeographyanddevelopment_geographyandenvironmentalmanagementdepartment/8/. Accessed 23 Feb 2024

  • Ayanlade A, Atai G, Jegede MO (2019) Variability in atmospheric aerosols and effects of humidity, wind and InterTropical discontinuity over different ecological zones in Nigeria. Atmos Environ 201:369–380

    Article  ADS  CAS  Google Scholar 

  • Balogun IA, Ntekop AA, Daramola MT (2019) Assessment of the bioclimatic conditions over some selected stations in Nigeria. SN Appl Sci 1:1–14

    Article  Google Scholar 

  • Beyer R, Krapp M, Manica A (2020) An empirical evaluation of bias correction methods for palaeoclimate simulations. Climate Past 16(4):1493–1508

    Article  ADS  Google Scholar 

  • Biau G, Scornet E (2016) A random forest guided tour. Test 25:197–227

    Article  MathSciNet  Google Scholar 

  • Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28(17):6938–6959

    Article  ADS  Google Scholar 

  • Casanueva A, Herrera S, Iturbide M, Lange S, Jury M, Dosio A, Maraun D, Gutiérrez JM (2020) Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmos Sci Lett 21(7):e978

    Article  ADS  Google Scholar 

  • Cho D, Yoo C, Im J, Cha D (2020) Comparative assessment of various machine learning-based bias correction methods for numerical weather prediction model forecasts of extreme air temperatures in urban areas. Earth Space Sci 7(4):e2019EA000740

    Article  ADS  Google Scholar 

  • Chokkavarapu, N, Mandla, VR (2019) Comparative study of GCMs, RCMs, downscaling and hydrological models: a review toward future climate change impact estimation. SN Appl Sci, 1(12). https://doi.org/10.1007/s42452-019-1764-x

  • Cortes C, Vapnik V (1995) Support-Vector Networks. Mach Learn 20:273–297

    Article  Google Scholar 

  • da Silva LBL, Alencar MH, de Almeida AT (2022) A novel spatiotemporal multi-attribute method for assessing flood risks in urban spaces under climate change and demographic scenarios. Sustain Cities Soc 76:103501

    Article  Google Scholar 

  • Daniel, H (2023) Performance assessment of bias correction methods using observed and regional climate model data in different watersheds, Ethiopia. J Water Climate Change https://doi.org/10.2166/wcc.2023.115

  • Dellink R, Lanzi E, Chateau J (2019) The sectoral and regional economic consequences of climate change to 2060. Environ Resour Econ 72:309–363

    Article  Google Scholar 

  • Dixon KW, Lanzante JR, Nath MJ, Hayhoe K, Stoner A, Radhakrishnan A, Balaji V, Gaitán CF (2016) Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results? Clim Change 135:395–408

    Article  ADS  Google Scholar 

  • Durodola OS (2019) The impact of climate change induced extreme events on agriculture and food security: a review on Nigeria. Agric Sci 10(4):487–498

    Google Scholar 

  • Enayati M, Bozorg-Haddad O, Bazrafshan J, Hejabi S, Chu X (2021) Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J Water Climate Change 12(2):401–419

    Article  Google Scholar 

  • Enyidi UD (2017) Potable Water and National Water Policy in Nigeria (A historical synthesis, pitfalls and the way forward). J Agricultural Econ Rural Dev 3(2):105–111

    Google Scholar 

  • Eum HI, Cannon AJ, Murdock TQ (2017) Intercomparison of multiple statistical downscaling methods: multi-criteria model selection for South Korea. Stoch Env Res Risk Assess 31:683–703

    Article  Google Scholar 

  • Falola T, Heaton MM (2008) A history of Nigeria. Cambridge University Press

    Book  Google Scholar 

  • Feng R, Zheng HJ, Gao H, Zhang AR, Huang C, Zhang JX, ..., Fan JR (2019) Recurrent Neural Network and random forest for analysis and accurate forecast of atmospheric pollutants: a case study in Hangzhou, China. J Clean Prod 231:1005–1015

  • Gebresellase SH, Wu Z, Xu H, Muhammad WI (2022) Evaluation and selection of CMIP6 climate models in Upper Awash Basin (UBA), Ethiopia: Evaluation and selection of CMIP6 climate models in Upper Awash Basin (UBA). Ethiopia Theoretical Appl Climatol 149(3–4):1521–1547

    Article  ADS  Google Scholar 

  • Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521(7553):452–459

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gori A, Lin N, Xi D, Emanuel K (2022) Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard. Nat Clim Chang 12(2):171–178

    Article  ADS  Google Scholar 

  • Greener JG, Kandathil SM, Moffat L, Jones DT (2022) A guide to machine learning for biologists. Nat Rev Mol Cell Biol 23(1):40–55

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsson L, Bremnes JB, Haugen JE, Skaugen TE (2012) Downscaling RCM precipitation to the station scale using quantile mapping–a comparison of methods. Hydrol Earth Syst Sci Discuss 9(5):6185–6201

    ADS  Google Scholar 

  • Gutjahr O, Heinemann G (2013) Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM: Effects on extreme values and climate change signal. Theoret Appl Climatol 114:511–529

    Article  ADS  Google Scholar 

  • Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data 7(1):109

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann, DL (2016) Chapter 11–global climate models. Global physical climatology, 2nd edn. Elsevier, Boston, 325–360. https://doi.org/10.1016/B978-0-12-328531-7.00011-6

  • Hassan, I, Kalin, RM, White, CJ, Aladejana, JA (2020) Selection of CMIP5 GCM ensemble for the projection of spatio-temporal changes in precipitation and temperature over the Niger Delta, Nigeria. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020385

  • Haylock MR, Cawley GC, Harpham C, Wilby RL, Goodess CM (2006) Downscaling heavy precipitation over the United Kingdom: a comparison of dynamical and statistical methods and their future scenarios. Int J Climatol A J Royal Meteorologic Soc 26(10):1397–1415

    Article  Google Scholar 

  • Heo J-H, Ahn H, Shin J-Y, Kjeldsen TR, Jeong C (2019) Probability distributions for a quantile mapping technique for a bias correction of precipitation data: A case study to precipitation data under climate change. Water 11(7):1475

    Article  Google Scholar 

  • Hieronymus M (2023) A novel machine learning based bias correction method and its application to sea level in an ensemble of downscaled climate projections. No. EGU23-5572. Copernicus Meetings, February 22, 2023, Vienna, Austria.

  • Homsi R, Shiru MS, Shahid S, Ismail T, Harun SB, Al-Ansari N, Chau K-W, Yaseen ZM (2020) Precipitation projection using a CMIP5 GCM ensemble model: a regional investigation of Syria. Eng Appl Comput Fluid Mech 14(1):90–106

    Google Scholar 

  • Illangasingha, S, Koike, T, Rasmy, M, Tamakawa, K, Matsuki, H, Selvarajah, H (2023) A holistic approach for using global climate model (GCM) outputs in decision making. J Hydrol, 130213. https://doi.org/10.1016/j.jhydrol.2023.130213

  • Isa, Z, Sawa, BA, Abdussalam, AF, Ibrahim, M, Babati, AH, Baba, BM, Ugya, AY (2023) Impact of climate change on climate extreme indices in Kaduna River basin, Nigeria. Environ Sci Pollut Res, 0123456789. https://doi.org/10.1007/s11356-023-27821-5

  • Iseri Y, Diaz AJ, Trinh T, Kavvas ML, Ishida K, Anderson ML, Ohara N, Snider ED (2021) Dynamical downscaling of global reanalysis data for high-resolution spatial modeling of snow accumulation/melting at the central/southern Sierra Nevada watersheds. J Hydrol 598:126445

    Article  Google Scholar 

  • Islam, SA, Anwar, AHMF, Bari, M (2023) A simple method of bias correction for GCM derived streamflow at catchment scale. Hydrol Sci J, just-accepted. https://doi.org/10.1080/02626667.2023.2218036

  • Jaiswal R, Mall RK, Singh N, Lakshmi Kumar TV, Niyogi D (2022) Evaluation of bias correction methods for regional climate models: Downscaled rainfall analysis over diverse agroclimatic zones of India. Earth Space Sci 9(2):e2021EA001981

    Article  ADS  Google Scholar 

  • Jose DM, Dwarakish GS (2022) Bias Correction and trend analysis of temperature data by a high-resolution CMIP6 Model over a Tropical River Basin. Asia-Pac J Atmos Sci 58(1):97–115

    Article  Google Scholar 

  • Jose DM, Vincent AM, Dwarakish GS (2022) Improving multiple model ensemble predictions of daily precipitation and temperature through machine learning techniques. Sci Rep 12(1):1–25. https://doi.org/10.1038/s41598-022-08786-w

    Article  CAS  Google Scholar 

  • Kim D-I, Kwon H-H, Han D (2019) Bias correction of daily precipitation over South Korea from the long-term reanalysis using a composite Gamma-Pareto distribution approach. Hydrol Res 50(4):1138–1161

    Article  Google Scholar 

  • Kim H, Ham YG, Joo YS, Son SW (2021) Deep learning for bias correction of MJO prediction. Nat Commun 12(1):3087

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingsolver JG, Diamond SE, Buckley LB (2013) Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct Ecol 27(6):1415–1423

    Article  Google Scholar 

  • Kopytkovskiy M, Geza M, McCray JE (2015) Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin. Journal of Hydrology: Regional Studies 3:473–493

    Google Scholar 

  • Koutsoyiannis D (2006) Nonstationarity versus scaling in hydrology. J Hydrol 324(1–4):239–254

    Article  Google Scholar 

  • Lafon T, Dadson S, Buys G, Prudhomme C (2013) Bias correction of daily precipitation simulated by a regional climate model: a comparison of methods. Int J Climatol 33(6):1367–1381

    Article  Google Scholar 

  • Laux P, Rötter RP, Webber H, Dieng D, Rahimi J, Wei J, Faye B, Srivastava AK, Bliefernicht J, Adeyeri O (2021) To bias correct or not to bias correct? An agricultural impact modelers’ perspective on regional climate model data. Agric for Meteorol 304:108406

    Article  Google Scholar 

  • Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332(3–4):487–496

    Article  Google Scholar 

  • Lee S, Kim JC, Jung HS, Lee MJ, Lee S (2017) Spatial prediction of flood susceptibility using randomforest and boosted-tree models in Seoul metropolitan city, Korea. Geomat Nat Haz Risk 8(2):1185–1203

    Article  Google Scholar 

  • Li X, Babovic V (2019) Multi-site multivariate downscaling of global climate model outputs: an integrated framework combining quantile mapping, stochastic weather generator and Empirical Copula approaches. Clim Dyn 52(9–10):5775–5799

    Article  Google Scholar 

  • Ling F, Li Y, Luo J-J, Zhong X, Wang Z (2022) Two deep learning-based bias-correction pathways improve summer precipitation prediction over China. Environ Res Lett 17(12):124025

    Article  ADS  Google Scholar 

  • Luo M, Liu T, Meng F, Duan Y, Frankl A, Bao A, De Maeyer P (2018) Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: a case study from the Kaidu River Basin in Western China. Water 10(8):1046

    Article  Google Scholar 

  • Madaki MY, Muench S, Kaechele H, Bavorova M (2023) Climate Change Knowledge and Perception among Farming Households in Nigeria. Climate 11(6):115

    Article  Google Scholar 

  • Maraun D (2013) Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J Clim 26(6):2137–2143

    Article  ADS  Google Scholar 

  • Maraun D (2016) Bias correcting climate change simulations-a critical review. Curr Climate Change Rep 2:211–220

    Article  Google Scholar 

  • Maraun D, Widmann M (2018) Statistical downscaling and bias correction for climate research. Cambridge University Press

    Book  Google Scholar 

  • Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, Gutiérrez JM, Hagemann S, Richter I, Soares PMM, Hall A (2017) Towards process-informed bias correction of climate change simulations. Nat Clim Chang 7(11):764–773

    Article  Google Scholar 

  • Maraun D, Huth R, Gutiérrez JM, Martín DS, Dubrovsky M, Fischer A, Hertig E, Soares PMM, Bartholy J, Pongrácz R (2019) The VALUE perfect predictor experiment: evaluation of temporal variability. Int J Climatol 39(9):3786–3818

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M (2010) Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of geophysics, 48(3)

  • Mendez M, Maathuis B, Hein-Griggs D, Alvarado-Gamboa L-F (2020) Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water 12(2):482

    Article  Google Scholar 

  • Mobolade, TD, Pourvahidi, P (2020) Bioclimatic approach for climate classification of Nigeria. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/su12104192

  • Motha RP, Baier W (2005) Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Clim Change 70(1–2):137–164

    Article  ADS  CAS  Google Scholar 

  • Muhammad, MKI, Nashwan, MS, Shahid, S, Ismail, T Bin, Song, YH, Chung, ES (2019) Evaluation of empirical reference evapotranspiration models using compromise programming: A case study of Peninsular Malaysia. Sustainability (Switzerland), 11(16). https://doi.org/10.3390/su11164267

  • Najafi MR, Moradkhani H, Wherry SA (2011) Statistical downscaling of precipitation using machine learning with optimal predictor selection. J Hydrol Eng 16(8):650–664

    Article  Google Scholar 

  • Nashwan MS, Shahid S (2019) Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmos Res 230:104632

    Article  Google Scholar 

  • Nashwan MS, Shahid S, Chung E-S (2020) High-resolution climate projections for a densely populated Mediterranean region. Sustainability 12(9):3684

    Article  Google Scholar 

  • Ngene BU, Nwafor CO, Bamigboye GO, Ogbiye AS, Ogundare JO, Akpan VE (2021) Assessment of water resources development and exploitation in Nigeria: A review of integrated water resources management approach. Heliyon 7(1):e05955. https://doi.org/10.1016/j.heliyon.2021.e05955

  • Nourani V, Razzaghzadeh Z, Baghanam AH, Molajou A (2019) ANN-based statistical downscaling of climatic parameters using decision tree predictor screening method. Theoret Appl Climatol 137:1729–1746

    Article  ADS  Google Scholar 

  • O’Neill BC, Tebaldi C, Van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque JF, Lowe J, Meehl GA, Moss R, Riahi K, Sanderson BM (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev 9(9):3461–3482. https://doi.org/10.5194/gmd-9-3461-2016

    Article  ADS  Google Scholar 

  • Oguntunde PG, Abiodun BJ (2013) The impact of climate change on the Niger River Basin hydroclimatology, West Africa. Clim Dyn 40:81–94

    Article  Google Scholar 

  • Okon EM, Falana BM, Solaja SO, Yakubu SO, Alabi OO, Okikiola BT, ..., Edeme AB (2021) Systematic review of climate change impact research in Nigeria: implication for sustainable development. Heliyon, 7(9):e07941. https://doi.org/10.1016/j.heliyon.2021.e07941

  • Okwu, MO, Tartibu, LK, Okwu, MO, Tartibu, LK (2021) Artificial neural network. Metaheuristic optimization: nature-inspired algorithms swarm and computational intelligence, theory and applications, 133–145. https://doi.org/10.1007/978-3-030-61111-8_14

  • Passow C, Donner RV (2020) Regression-based distribution mapping for bias correction of climate model outputs using linear quantile regression. Stoch Env Res Risk Assess 34:87–102

    Article  Google Scholar 

  • Peng Y, Duan A, Hu W, Tang B, Li X, Yang X (2022) Observational constraint on the future projection of temperature in winter over the Tibetan Plateau in CMIP6 models. Environ Res Lett 17(3):34023

    Article  Google Scholar 

  • Piani C, Weedon GP, Best M, Gomes SM, Viterbo P, Hagemann S, Haerter JO (2010) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395(3–4):199–215

    Article  Google Scholar 

  • Pour SH, Shahid S, Chung ES (2016) A hybrid model for statistical downscaling of daily rainfall. Procedia Eng 154:1424–1430

    Article  Google Scholar 

  • Pour SH, Shahid S, Chung ES, Wang XJ (2018) Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh. Atmos Res 213:149–162

    Article  Google Scholar 

  • Qi Y (2012) Random forest for bioinformatics. Ensemble Mach Learn: Methods Appl, pp 307–323

    Google Scholar 

  • Raczko E, Zagajewski B (2017) Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur J Remote Sens 50(1):144–154

    Article  Google Scholar 

  • Raju KS, Kumar DN (2014) Ranking of global climate models for India using multicriterion analysis. Climate Res 60(2):103–117. https://doi.org/10.3354/cr01222

    Article  ADS  Google Scholar 

  • Riahi K, Van Vuuren DP, Kriegler E, Edmonds J, O’neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob Environ Chang 42:153–168

    Article  Google Scholar 

  • Ringuest, JL, Ringuest, JL (1992) Compromise programming. Multiobjective optimization: behavioral and computational considerations, 51–59. https://doi.org/10.1007/978-1-4615-3612-3_4

  • Ruffault J, Martin-StPaul NK, Duffet C, Goge F, Mouillot F (2014) Projecting future drought in Mediterranean forests: bias correction of climate models matters! Theoret Appl Climatol 117:113–122

    Article  ADS  Google Scholar 

  • Salman SA, Shahid S, Ismail T, Al-Abadi AM, Wang XJ, Chung ES (2019) Selection of gridded precipitation data for Iraq using compromise programming. Meas J Int Meas Confederation 132:87–98. https://doi.org/10.1016/j.measurement.2018.09.047

    Article  Google Scholar 

  • Salman, SA, Hamed, MM, Shahid, S, Ahmed, K, Sharafati, A, Asaduzzaman, M, Ziarh, GF, Ismail, T, Chung, E, Wang, X (2022) Projecting spatiotemporal changes of precipitation and temperature in Iraq for different shared socioeconomic pathways with selected Coupled Model Intercomparison Project Phase 6. Int J Climatol, 42(16), 9032–9050.‬‬‬‬‬‬‬‬‬‬‬‬‬ https://doi.org/10.1002/joc.7794

  • Sarr MA, Seidou O, Tramblay Y, El Adlouni S (2015) Comparison of downscaling methods for mean and extreme precipitation in Senegal. J Hydrol : Region Stud 4:369–385

    Google Scholar 

  • Sediqi MN, Shiru MS, Nashwan MS, Ali R, Abubaker S, Wang X, Manawi SMA (2019) Spatio-temporal pattern in the changes in availability and sustainability of water resources in Afghanistan. Sustainability 11(20):5836

    Article  Google Scholar 

  • Senatore A, Fuoco D, Maiolo M, Mendicino G, Smiatek G, Kunstmann H (2022) Evaluating the uncertainty of climate model structure and bias correction on the hydrological impact of projected climate change in a Mediterranean catchment. J Hydrol: Region Stud 42:101120

    Google Scholar 

  • Seo G-Y, Ahn J-B (2023) Comparison of Bias Correction Methods for Summertime Daily Rainfall in South Korea Using Quantile Mapping and Machine Learning Model. Atmosphere 14(7):1057

    Article  ADS  Google Scholar 

  • Sheng, VS, Provost, F, Ipeirotis, PG (2008) Get another label? improving data quality and data mining using multiple, noisy labelers. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, Vegas, Nevada, USA, pp. 614–622

  • Shiru MS, Park I (2020) Comparison of ensembles projections of rainfall from four bias correction methods over Nigeria. Water 12(11):3044

    Article  Google Scholar 

  • Shiru MS, Shahid S, Chung ES, Alias N (2019) Changing characteristics of meteorological droughts in Nigeria during 1901–2010. Atmos Res 223(March):60–73. https://doi.org/10.1016/j.atmosres.2019.03.010

    Article  Google Scholar 

  • Shiru MS, Chung E-S, Shahid S, Alias N (2020) GCM selection and temperature projection of Nigeria under different RCPs of the CMIP5 GCMS. Theoret Appl Climatol 141:1611–1627

    Article  ADS  Google Scholar 

  • Shrestha SG, Pradhanang SM (2022) Optimal selection of representative climate models and statistical downscaling for climate change impact studies: a case study of Rhode Island, USA. Theoret Appl Climatol 149(1–2):695–708

    Article  ADS  Google Scholar 

  • Solarin SA, Nathaniel SP, Bekun FV, Okunola AM, Alhassan A (2021) Towards achieving environmental sustainability: environmental quality versus economic growth in a developing economy on ecological footprint via dynamic simulations of ARDL. Environ Sci Pollut Res 28:17942–17959

    Article  Google Scholar 

  • Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208. https://doi.org/10.1175/JCLI-D-12-00321.1

    Article  ADS  Google Scholar 

  • Switanek MB, Troch PA, Castro CL, Leuprecht A, Chang H-I, Mukherjee R, Demaria E (2017) Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes. Hydrol Earth Syst Sci 21(6):2649–2666

    Article  ADS  Google Scholar 

  • Tan Y, Guzman SM, Dong Z, Tan L (2020) Selection of effective GCM bias correction methods and evaluation of hydrological response under future climate scenarios. Climate 8(10):108

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J Hydrol 456:12–29

    Article  Google Scholar 

  • Tumsa BC (2022) Performance assessment of six bias correction methods using observed and RCM data at upper Awash basin, Oromia, Ethiopia. J Water Climate Change 13(2):664–683

    Article  Google Scholar 

  • Vogel, E, Johnson, F, Marshall, L, Bende-Michl, U, Wilson, L, Peter, JR, Wasko, C, Srikanthan, S, Sharples, W, Dowdy, A (2023) An evaluation framework for downscaling and bias correction in climate change impact studies. J Hydrol, 129693. https://doi.org/10.1016/j.jhydrol.2023.129693

  • Vrac M, Drobinski P, Merlo A, Herrmann M, Lavaysse C, Li L, Somot S (2012) Dynamical and statistical downscaling of the French Mediterranean climate: uncertainty assessment. Nat Hazard 12(9):2769–2784

    Article  Google Scholar 

  • Wada, IM, Usman, HS, Nwankwegu, AS, Usman, MN, Gebresellase, SH (2023) Selection and downscaling of CMIP6 climate models in Northern Nigeria. Theoretical and Applied Climatology, 1–19. https://doi.org/10.1007/s00704-023-04534-w

  • Wilcke RAI, Mendlik T, Gobiet A (2013) Multi-variable error correction of regional climate models. Clim Change 120:871–887

    Article  ADS  Google Scholar 

  • Worako AW, Haile AT, Taye MT (2022) Implication of bias correction on climate change impact projection of surface water resources in the Gidabo sub-basin, Southern Ethiopia. J Water Climate Change 13(5):2070–2088

    Article  Google Scholar 

  • Wörner V, Kreye P, Meon G (2019) Effects of bias-correcting climate model data on the projection of future changes in high flows. Hydrology 6(2):46

    Article  Google Scholar 

  • Wu Y, Miao C, Fan X, Gou J, Zhang Q, Zheng H (2022) Quantifying the uncertainty sources of future climate projections and narrowing uncertainties with bias correction techniques. Earth’s Future 10(11):e2022EF002963

    Article  ADS  Google Scholar 

  • Xu Z, Han Y, Yang Z (2019) Dynamical downscaling of regional climate: A review of methods and limitations. Sci China Earth Sci 62:365–375

    Article  ADS  Google Scholar 

  • Yoo C, Han D, Im J, Bechtel B (2019) Comparison between convolutional neural networks and random forest for local climate zone classification in mega urban areas using Landsat images. ISPRS J Photogramm Remote Sens 157:155–170

    Article  ADS  Google Scholar 

  • Zhang Q, Li YP, Huang GH, Wang H, Li YF, Liu YR, Shen ZY (2022) A novel statistical downscaling approach for analyzing daily precipitation and extremes under the impact of climate change: Application to an arid region. J Hydrol 615:128730

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for this research, authorship, or publication.

Author information

Authors and Affiliations

Authors

Contributions

All the authors participated in the conceptualization of the research. B.T., A.D.B. and S.A.A. gathered data. M.K. and M.K.I.M. pre-processed the data. S.S. developed the code for data analysis. B.T., M.A.A. and Z.M.Y. generated results. B.T. and M.K. analyzed the results. B.T. and S.S. prepared the first draft of the article. All the authors contributed to revising and editing the draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shamsuddin Shahid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanimu, B., Bello, AA.D., Abdullahi, S.A. et al. Comparison of conventional and machine learning methods for bias correcting CMIP6 rainfall and temperature in Nigeria. Theor Appl Climatol (2024). https://doi.org/10.1007/s00704-024-04888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00704-024-04888-9

Navigation