Skip to main content

Advertisement

Log in

Intensity and spatial heterogeneity of design rainstorm under nonstationarity and stationarity hypothesis across mainland China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Understanding the trend characteristics of design rainstorm and spatial heterogeneity of extreme precipitation is of great importance to reduce disasters induced by rare extreme precipitation. Using a high-resolution (0.5° × 0.5°) daily gridded data set of precipitation across mainland China from 1961 to 2013, this study investigated the historical changing trend and spatial heterogeneity of design rainstorm using the 30-year moving window method (30YM). Differences in the quantification of the design rainstorm were compared for the use of the 30YM and the 30-year-based increasing window method (30YBI). The results show that a significant increasing intensity but no spatially uniform trend of design rainstorm can be observed across mainland China based on the 30YM analysis. The south, east, and northeast China mainly showed an increasing trend, but the southwest and north China presented a decreasing trend. The spatial heterogeneity of the design rainstorm was greatly enhanced if the nonstationarity assumption was adopted on the national scale. The heterogeneity showed an increasing trend mainly in southeast, north, northeast, and northwest China, and a decreasing trend in southwest and west China, indicating significant regional variation in spatial heterogeneity. For most areas of mainland China, especially for southeastern, northeastern, and western China, use of the most recent precipitation sub-series to quantify the design rainstorm may weaken the potential nonstationarity and guarantee the safety of infrastructure in these areas where design rainfall increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111 (D5)

  • Asl SJ, Khorshiddoust AM, Dinpashoh Y, Sarafrouzeh F (2013) Frequency analysis of climate extreme events in Zanjan, Iran. Stochastic Environ Res Risk Assess 27(7):1637–1650

    Article  Google Scholar 

  • Bao J, Sherwood SC, Alexander LV, Evans JP (2017) Future increases in extreme precipitation exceed observed scaling rates. Nat Clim Chang 7(2):128–132

    Article  Google Scholar 

  • Bonnin GM, Todd D, Lin B, Parzybok T, Yekta M, Riley D (2004) Statistics of recent updates to NOAA/NWS rainfall frequency atlases. ASCE/EWRI World Water and Environmental Resources Congress, Salt Lake City, Utah

    Book  Google Scholar 

  • Bonsal BR, Zhang X, Vincent LA, Hogg WD (2001) Characteristics of daily and extreme temperatures over Canada. J Clim 14(9):1959–1976

    Article  Google Scholar 

  • Burt TP, Howden NJK, Worrall F (2016) The changing water cycle: hydroclimatic extremes in the british isles. Wiley Interdiscip Rev Water 3(6):854–870

    Article  Google Scholar 

  • Cancelliere A (2017) Non stationary analysis of extreme events. Water Resour Manag 31(10):3097–3110

    Article  Google Scholar 

  • Choi W, Tareghian R, Choi J, Hwang C (2014) Geographically heterogeneous temporal trends of extreme precipitation in Wisconsin, USA, during 1950–2006. Int J Climatol 34(9):2841–2852

    Google Scholar 

  • Chow VT, Mainment DR, Mays LW (1988) Applied hydrology. McGraw-Hill, New York

    Google Scholar 

  • Cong Z, Yang D, Gao B, Yang H, Hu H (2009) Hydrological trend analysis in the Yellow River Basin using a distributed hydrological model. Water Resour Res 45(7):335–345

    Article  Google Scholar 

  • Cooley D, Nychka D, Naveau P (2007) Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc 102(479):824–840

    Article  Google Scholar 

  • Dai L, Van Rijswick HFMW, Driessen PPJ, Keessen AM (2017) Governance of the sponge city programme in China with Wuhan as a case study. Int J Water Resour Dev 12:1–19

    Google Scholar 

  • Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2017) More extreme precipitation in the world’s dry and wet regions. Nat Clim Chang 7(2):154–158

    Article  Google Scholar 

  • Du T, Xiong L, Xu CY, Gippel CJ, Guo S, Liu P (2015) Return period and risk analysis of nonstationary low-flow series under climate change. J Hydrol 527:234–250

    Article  Google Scholar 

  • Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, Boca Raton, Fla

    Google Scholar 

  • Evans JP, Argueso D, Olson R, Luca AD (2017) Bias-corrected regional climate projections of extreme rainfall in south-east Australia. Theor Appl Climatol 130(3–4):1085–1098

    Article  Google Scholar 

  • Fischer EM, Knutti R (2016) Observed heavy precipitation increase confirms theory and early models. Nat Clim Chang 6(11):986–991

    Article  Google Scholar 

  • Gao T, Wang HJ, Zhou T (2017) Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China. Atmos Res 197:379–389

    Article  Google Scholar 

  • Ghosh S, Das D, Kao SC, Ganguly AR (2012) Lack of uniform trends but increasing spatial variability in observed indian rainfall extremes. Nat Clim Chang 2(2):86–91

    Article  Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

    Article  Google Scholar 

  • Gu X, Zhang Q, Singh VP, Chen X, Liu L (2016) Nonstationarity in the occurrence rate of floods in the Tarim River Basin, China, and related impacts of climate indices. Glob Planet Chang 142:1–13

    Article  Google Scholar 

  • Gu X, Zhang Q, Singh VP, Liu L, Shi P (2017a) Spatiotemporal patterns of annual and seasonal precipitation extreme distributions across China and potential impact of tropical cyclones. Int J Climatol 37(10):3949–3962

    Article  Google Scholar 

  • Gu X, Zhang Q, Singh VP, Shi P (2017b) Nonstationarity in timing of extreme precipitation across China and impact of tropical cyclones. Glob Planet Chang 149:153–165

    Article  Google Scholar 

  • Hu D, Saito Y, Kempe S (1998) Sediment and nutrient transport to the coastal zone. In: Galloway JN, Mellilo JM (eds) Asian change in the context of global climate change: impact of natural and anthropogenic changes in Asia on global biogeochemical cycles. IGBP Publ. Series, vol 3. Cambridge University Press, Cambridge, pp 245–270

    Google Scholar 

  • IPCC (2007) Summary for policymakers of climate change 2007: the physical science basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2012) Summary for policymakers. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 3–21

    Google Scholar 

  • Johnson RW (2001) An introduction to the bootstrap. Teach Stat 23(2):49–54

    Article  Google Scholar 

  • Kao SC, Ganguly AR (2011) Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios. J Geophys Res Atmos (1984-2012)

  • Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Chang 4(7):570–576

    Article  Google Scholar 

  • Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18(8):1156–1173

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang XB, Hegerl GC (2007) Changes in precipitation and temperature extremes in the IPCC ensemble of global coupled model simulations. J Clim 20(8):1419–1444

    Article  Google Scholar 

  • Knutson TR, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3(3):157–163

    Article  Google Scholar 

  • Lai C, Shao Q, Chen X, Wang Z, Zhou X, Yang B, Zhang L (2016) Flood risk zoning using a rule mining based on ant colony algorithm. J Hydrol 542:268–280

    Article  Google Scholar 

  • Lai C, Zhong R, Wang Z, Wu X, Chen X, Wang P, Lian Y (2019) Monitoring hydrological drought using long-term satellite-based precipitation data. Sci Total Environ 649:1198–1208

    Article  Google Scholar 

  • Lima CHR, Kwon HH, Kim JY (2016) A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate. J Hydrol 540:744–756

    Article  Google Scholar 

  • Liu MX, Xu XL, Sun AY, Wang K, Liu W, Zhang X (2014) Is southwestern China experiencing more frequent precipitation extremes? Environ Res Lett 9(6):064002

    Article  Google Scholar 

  • Liu MX, Xu XL, Sun A (2015) Decreasing spatial variability in precipitation extremes in southwestern China and the local/large-scale influencing factors. J Geophys Res Atmos 120(13):6480–6488

    Article  Google Scholar 

  • Meehl GA, Karl T, Easterling DR, Changnon S, Pielke R, Changnon D, Evans J, Groisman PY, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarty R, Root T, Sylves RT, Whetton P, Zwiers F (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81(3):413–416

    Article  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Climate change-stationarity is dead: whither water management? Science 319(5863):573–574

    Article  Google Scholar 

  • Min SK, Zhang XB, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470(7334):378–381

    Article  Google Scholar 

  • NMIC (2012) Assessment report of China’s ground precipitation 0.5∘ × 0.5∘ gridded dataset (V2.0). National Meteorological Information Center: Beijing

  • Pall P, Allen MR, Stone DA (2007) Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn 28(4):351–363

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pinto I, Lennard C, Tadross M, Hewitson B, Dosio A, Nikulin G, Panitz HJ, Shongwe ME (2016) Evaluation and projections of extreme precipitation over southern Africa from two CORDEX models. Clim Chang 135(3–4):655–668

    Article  Google Scholar 

  • Rashid MM, Beecham S, Chowdhury RK (2016) Simulation of extreme rainfall and projection of future changes using the GLIMCLIM model. Theor Appl Climatol 130(1–2):453–466

    Google Scholar 

  • Ren ZG, Zhang MJ, Wang SJ, Qiang F, Zhu XF, Dong L (2015) Changes in daily extreme precipitation events in South China from 1961 to 2011. J Geogr Sci 25(1):58–68

    Article  Google Scholar 

  • Sillmann J, Stjern CW, Myhre G, Forster PM (2017) Slow and fast response of mean and extreme precipitation to different forcing in CMIP5 simulations. Geophys Res Lett 44(12):6383–6390

    Article  Google Scholar 

  • Singh V, Goyal MK (2016) Spatio-temporal heterogeneity and changes in extreme precipitation over eastern Himalayan catchments India. Stochastic Environ Res Risk Assess 31(10):2527–2546

    Article  Google Scholar 

  • Singh J, Vittal H, Karmakar S, Ghosh S, Niyogi D (2016) Urbanization causes nonstationarity in Indian summer monsoon rainfall extremes. Geophys Res Lett 43(21):11269–11277

    Article  Google Scholar 

  • So BJ, Kim JY, Kwon HH, Lima CHR (2017) Stochastic extreme downscaling model for an assessment of changes in rainfall intensity-duration-frequency curves over South Korea using multiple regional climate models. J Hydrol 553:321–337

    Article  Google Scholar 

  • Son C, Lee T, Kwon HH (2017) Integrating nonstationary behaviors of typhoon and non-typhoon extreme rainfall events in East Asia. Sci Rep 7:5097

    Article  Google Scholar 

  • Sraj M, Viglione A, Parajka J, Bloschl G (2016) The influence of non-stationarity in extreme hydrological events on flood frequency estimation. J Hydrol Hydromech 64(4):426–437

    Article  Google Scholar 

  • Stennett-Brown RK, Jones JJP, Stephenson TS, Taylor MA (2017) Future Caribbean temperature and rainfall extremes from statistical downscaling. Int J Climatol 37(14):4828–4845

    Article  Google Scholar 

  • Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (2013) IPCC, 2013: climate change 2013 the physical science basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415324

  • Sun J, Zhang FQ (2017) Daily extreme precipitation and trends over China. Sci Chin Earth Sci 60(12):2190–2203

    Article  Google Scholar 

  • Sun QH, Miao CY, Qiao YY, Duan QY (2017a) The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Clim Dyn 49(11–12):4281–4292

    Article  Google Scholar 

  • Sun QH, Miao CY, Duan QY (2017b) Changes in the spatial heterogeneity and annual distribution of observed precipitation across China. J Clim 30(23):9399–9416

    Article  Google Scholar 

  • Svensson C, Jones DA (2010) Review of methods for deriving areal reduction factors. J Flood Risk Manag 3(3):232–245

    Article  Google Scholar 

  • Um MJ, Kim Y, Markus M, Wuebbles DJ (2017) Modeling nonstationary extreme value distributions with nonlinear functions: an application using multiple precipitation projections for US cities. J Hydrol 552:396–406

    Article  Google Scholar 

  • Ummenhofer CC, Meehl GA (2017) Extreme weather and climate events with ecological relevance: a review. Philos Trans R Soc Lond 372(1723):20160135

    Article  Google Scholar 

  • Wang WG, Shao QX, Yang T, Peng SZ, Yu ZB, Taylor J, Xing WQ, Zhao CP, Sun FC (2013) Changes in daily temperature and precipitation extremes in the Yellow River Basin, China. Stochastic Environ Res Risk Assess 27(2):401–421

    Article  Google Scholar 

  • Wang Z, Lai C, Chen X, Yang B, Zhao S, Bai X (2015) Flood hazard risk assessment model based on random forest. J Hydrol 527:1130–1141

    Article  Google Scholar 

  • Wang R, Chen JY, Chen XW, Wang YF (2017a) Variability of precipitation extremes and dryness/wetness over the southeast coastal region of China, 1960-2014. Int J Climatol 37(13):4656–4669

    Article  Google Scholar 

  • Wang Z, Xie P, Lai C, Chen X, Zeng Z, Li J (2017b) Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961-2013. J Hydrol 544:97–108

    Article  Google Scholar 

  • Wang Z, Zeng Z, Lai C, Lin W, Wu X, Chen X (2017c) A regional frequency analysis of precipitation extremes in Mainland China with fuzzy c-means and L-moments approaches. Int J Climatol 37:429–444

    Article  Google Scholar 

  • Wang Z, Zhong R, Lai C, Zeng Z, Lian Y, Bai X (2018a) Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agric For Meteorol 249:149–162

    Article  Google Scholar 

  • Wang Z, Li J, Lai C, Wang RY, Chen X, Lian Y (2018b) Drying tendency dominating the global grain production area. Glob Food Sec 16:138–149

    Article  Google Scholar 

  • Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918

    Article  Google Scholar 

  • Wong KK, Zhao XB (2001) Living with floods: victims’ perceptions in Beijiang, Guangdong, China. Area 33(2):190–201

    Article  Google Scholar 

  • Wu CH, Huang GR (2015) Changes in heavy precipitation and floods in the upstream of the Beijiang River Basin, South China. Int J Climatol 35(10):2978–2992

    Article  Google Scholar 

  • Wu XS, Wang ZL, Zhou XW, Lai CG, Lin WX, Chen XH (2016) Observed changes in precipitation extremes across 11 basins in China during 1961-2013. Int J Climatol 36(8):2866–2885

    Article  Google Scholar 

  • Yin H, Donat MG, Alexander LV, Sun Y (2015) Multi-dataset comparison of gridded observed temperature and precipitation extremes over China. Int J Climatol 35(10):2809–2827

    Article  Google Scholar 

  • You QL, Kang SC, Aguilar E, Pepin N, Flugel WA, Yan YP, Xu YW, Zhang YJ, Huang J (2011) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003. Clim Dyn 36(11–12):2399–2417

    Article  Google Scholar 

  • Zhang XB, Zwiers FW, Hegerl GC, Lambert FH, Gillett NP, Solomon S, Stott PA, Nozawa T (2007) Detection of human influence on twentieth-century precipitation trends. Nature 448(7152):461–465

    Article  Google Scholar 

  • Zhang Q, Singh VP, Li JF, Chen XH (2011a) Analysis of the periods of maximum consecutive wet days in China. J Geophys Res Atmos 116:D23106

    Article  Google Scholar 

  • Zhang XB, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011b) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Chang 2(6):851–870

    Article  Google Scholar 

  • Zhang DL, Lin YH, Zhao P, Yu XD, Wang SQ, Kang HW, Ding YH (2013) The Beijing extreme rainfall of 21 July 2012: “right results” but for wrong reasons. Geophys Res Lett 40(7):1426–1431

    Article  Google Scholar 

  • Zhang ZJ, Zhang CM, Cui QR (2017) Random threshold driven tail dependence measures with application to precipitation data analysis. Stat Sin 27(2):685–709

    Google Scholar 

  • Zhou BT, Wen QH, Xu Y, Song LC, Zhang XB (2014) Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 27(17):6591–6611

    Article  Google Scholar 

  • Zhu Q, Xu YP, Gu H (2016) Parameter uncertainty and nonstationarity in regional extreme rainfall frequency analysis in Qu River Basin, East China. J Hydrol Eng 21(5):04016008

    Article  Google Scholar 

  • Zong YQ, Chen XQ (2000) The 1998 flood on the Yangtze, China. Nat Hazards 22(2):165–184

    Article  Google Scholar 

Download references

Funding

The research is financially supported by the National Key R&D Program of China (2018YFC1508201) and the National Natural Science Foundation of China (Grant Nos. 51879107, 51709117, 51579105, 91547202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoli Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlight

1. Obtain a design rainstorm value using a 30-year moving window

2. Investigate the changing trend of design rainstorm across mainland China

3. Explore the spatial heterogeneity trend of design rainstorm across mainland China

4. Discuss the difference of design rainstorm from different amounts of rainfall data.

Electronic supplementary material

ESM 1

(DOCX 6018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Lai, C., Wang, Z. et al. Intensity and spatial heterogeneity of design rainstorm under nonstationarity and stationarity hypothesis across mainland China. Theor Appl Climatol 138, 1795–1808 (2019). https://doi.org/10.1007/s00704-019-02937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-02937-2

Navigation