Skip to main content
Log in

Precursory signals of the major El Niño Southern Oscillation events

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

An exploration of the temporal evolution of the El Niño Southern Oscillation (ENSO) from January 1876 to November 2011 by means of a new time domain called natural time reveals that the major ENSO extremes provide precursory signals that are maximized in a time window of almost 2 years. This finding may be used to improve the accuracy of the short-term prediction models of the ENSO extremes, thus enabling steps to be taken to ameliorate its disastrous impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe S, Sarlis NV, Skordas ES, Tanaka HK, Varotsos PA (2005) Origin of the usefulness of the natural-time representation of complex time series. Phys Rev Lett. doi:10.1103/PhysRevLett.94.170601

    Google Scholar 

  • An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • Anderson DLT, Davey MK (1998) Predicting the El Niño of 1997/98. Weather 53:303–310

    Article  Google Scholar 

  • Ausloos M, Ivanova K (2001) Power-law correlations in the southern-oscillation-index fluctuations characterizing El Niño. Phys Rev E. doi:10.1103/PhysRevE.63.047201

    Google Scholar 

  • Ausloos M, Ivanova K (2003) Reply to “Comment on ‘Power-law correlations in the southern-oscillation-index fluctuations characterizing El Niño’”. Phys Rev E. doi:10.1103/PhysRevE.67.068201

    Google Scholar 

  • Balmaseda MA, Anderson DLT, Davey MK (1994) ENSO prediction using a dynamical ocean model coupled to statistical atmospheres. Tellus A 46:497–511

    Article  Google Scholar 

  • Barnston AG, Kumar A, Goddard L, Hoerling MP (2005) Improving seasonal prediction practices through attribution of climate variability. Bull Am Meteorol Soc 86:59–72

    Article  Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML, Li SH, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93:631–651

    Article  Google Scholar 

  • Bigg GR (1990) El Nino and the Southern Oscillation. Weather 45:2–8

    Article  Google Scholar 

  • Chandra S, Varotsos C, Flynn LE (1996) The mid-latitude total ozone trends in the northern hemisphere. Geophys Res Lett 23:555–558

  • Cheng YJ, Tang YM, Chen DK (2011) Relationship between predictability and forecast skill of ENSO on various time scales. J Geophys Res. doi:10.1029/2011JC007249

    Google Scholar 

  • Cortesi U, Lambert JC, De Clercq C, Bianchini G, Blumenstock T, Bracher A, Castelli E, Catoire V, Chance KV, De Maziere M, Demoulin P, Godin Beekmann S, Jones N, Jucks K, Keim C, Kerzenmacher T, Kuellmann H, Kuttippurath J, Iarlori M, Liu GY, Liu Y, McDermid IS, Meijer YJ, Mencaraglia F, Mikuteit S, Oelhaf H, Piccolo C, Pirre M, Raspollini P, Ravegnani F, Reburn WJ, Redaelli G, Remedios JJ, Sembhi H, Smale D, Steck T, Taddei A, Varotsos C, Vigouroux C, Waterfall A, Wetzel G, Wood S (2007) Geophysical validation of MIPAS-ENVISAT operational ozone data. Atmos Chem Phys 7:4807–4867

    Article  Google Scholar 

  • Cracknell AP, Varotsos CA (2007) The IPCC Fourth Assessment Report and the fiftieth anniversary of Sputnik. Environ Sci Pollut Res 14:384–387

    Article  Google Scholar 

  • Curtis S, Adler R (2000) ENSO indices based on patterns of satellite-derived precipitation. J Clim 13:2786–2793

    Article  Google Scholar 

  • Ebel A, Memmesheimer M, Jakobs HJ (2007) Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modeling. Bound-Layer Meteorol 125:265–278

    Article  Google Scholar 

  • Eccles F, Tziperman E (2004) Nonlinear effects on ENSO’s period. J Atmos Sci 61:474–482

    Article  Google Scholar 

  • Eckhardt S, Stohl A, Wernli H, James P, Forster C, Spichtinger N (2004) A 15-year climatology of warm conveyor belts. J Clim 17:218–237

    Article  Google Scholar 

  • Efstathiou MN, Varotsos CA (2012) Intrinsic properties of Sahel precipitation anomalies and rainfall. Theor Appl Climatol 109:627–633

  • Efstathiou MN, Varotsos CA (2013) On the 11 year solar cycle signature in global total ozone dynamics. Meteorol Appl 20:72–79

  • Efstathiou MN, Tzanis C, Cracknell AP, Varotsos CA (2011) New features of land and sea surface temperature anomalies. Int J Remote Sens 32:3231–3238

    Article  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Garber A, Hallerberg S, Kantz H (2009) Predicting extreme avalanches in self-organized critical sandpiles. Phys Rev E. doi:10.1103/PhysRevE.80.026124

    Google Scholar 

  • Graham RJ, Evans ADL, Mylne KR, Harrison MSJ, Robertson KB (2000) An assessment of seasonal predictability using atmospheric general circulation models. Q J R Meteorol Soc 126:2211–2240

    Article  Google Scholar 

  • Grassl H (2000) Status and improvements of coupled general circulation models. Science 288:1991–1997

    Article  Google Scholar 

  • Grassl H (2011) Climate change challenges. Surv Geophys 32:319–328

    Article  Google Scholar 

  • Gu DF, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Hsiang SM, Meng KC, Cane MA (2011) Civil conflicts are associated with the global climate. Nature 476:438–441

    Article  Google Scholar 

  • Huang J, van den Dool HM, Barnston AG (1996) Long-lead seasonal temperature prediction using optimal climate normals. J Clim 9:809–817

    Article  Google Scholar 

  • Huesmann AS, Hitchman MH (2001) The stratospheric quasi-biennial oscillation in the NCEP reanalyses: climatological structures. J Geophys Res 106(D11):11859–11874

    Article  Google Scholar 

  • James P, Stohl A, Forster C, Eckhardt S, Seibert P, Frank A (2003) A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model: 2. Mean climate and seasonal variability. J Geophys Res. doi:10.1029/2002JD002639

    Google Scholar 

  • Kahya E, Dracup JA (1993) U.S. streamflow patterns in relation to the El Niño/Southern Oscillation. Water Resour Res 29:2491–2503

    Article  Google Scholar 

  • Kirtman BP (1997) Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J Clim 10:1690–1704

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kondrashov D, Kravtsov S, Robertson AW, Ghil M (2005) A hierarchy of data-based ENSO models. J Clim 18:4425–4444

    Article  Google Scholar 

  • Kondratyev KY, Varotsos C (1995a) Atmospheric greenhouse effect in the context of global climate change. Il Nuovo Cimento C 18:123–151

    Article  Google Scholar 

  • Kondratyev KY, Varotsos CA (1995b) Volcanic eruptions and global ozone dynamics. Int J Remote Sens 16:1887–1895

    Article  Google Scholar 

  • Kondratyev KY, Varotsos CA (1995c) Atmospheric ozone variability in the context of global change. Int J Remote Sens 16:1851–1881

    Article  Google Scholar 

  • Kondratyev KY, Varotsos C (2002) Remote sensing and global tropospheric ozone observed dynamics. Int J Remote Sens 23:159–178

  • Kumar A, Barnston AG, Peng PT, Hoerling MP, Goddard L (2000) Changes in the spread of the variability of the seasonal mean atmospheric states associated with ENSO. J Clim 13:3139–3151

    Article  Google Scholar 

  • Latif M, Anderson D, Barnett T, Cane M, Kleeman R, Leetmaa A, O’Brien J, Rosati A, Schneider E (1998) A review of the predictability and prediction of ENSO. J Geophys Res 103(C7):14375–14393

    Article  Google Scholar 

  • Lenton TM, Livina VN, Dakos V, van Nes EH, Scheffer M (2012) Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Phil Trans R Soc A 370:1185–1204

    Article  Google Scholar 

  • Lin J-L (2007) Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys Res Lett. doi:10.1029/2006GL028937

    Google Scholar 

  • Linsley BK, Wellington GM, Schrag DP (2000) Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science 290:1145–1148

    Article  Google Scholar 

  • Livezey RE (1990) Variability of skill of long-range forecasts and implications for their use and value. Bull Am Meteorol Soc 71:300–309

    Article  Google Scholar 

  • Mak M (1995) Orthogonal wavelet analysis: interannual variability in the sea surface temperature. Bull Am Meteorol Soc 76:2179–2186

    Article  Google Scholar 

  • Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Clim 18:447–456

    Article  Google Scholar 

  • Marshall PA, Schuttenberg HZ (2006) A reef manager’s guide to coral bleaching. Great Barrier Reef Marine Park Authority, Australia, p 167, ISBN 1-876945-40-0

  • Mason SJ, Graham NE (2002) Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation. Q J R Meteorol Soc 128:2145–2166

    Article  Google Scholar 

  • McCreary JP, Anderson DLT (1991) An overview of coupled ocean–atmosphere models of El Niño and the Southern Oscillation. J Geophys Res 96:3125–3150

    Article  Google Scholar 

  • Monks PS et al (2009) Atmospheric composition change—global and regional air quality. Atmos Environ 43:5268–5350

    Article  Google Scholar 

  • National Climate Centre, Bureau of Meteorology (2012) Australia’s wettest two-year period on record; 2010–2011. Special Climate Statement 38, Melbourne, Australia

  • Neelin JD, Latif M, Jin FF (1994) Dynamics of coupled ocean-atmosphere models. The tropical problem. Annu Rev Fluid Mech 26:617–659

    Article  Google Scholar 

  • Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Clim 16:3853–3857

    Article  Google Scholar 

  • Palmer TN, Anderson DLT (1994) The prospects for seasonal forecasting—a review paper. Q J R Meteorol Soc 120:755–793

    Google Scholar 

  • Penland C (1996) A stochastic model of IndoPacific sea surface temperature anomalies. Physica D 98:534–558

    Article  Google Scholar 

  • Penland C, Sardeshmukh PD (1995) The optimal-growth of tropical sea-surface temperature anomalies. J Clim 8:1999–2024

    Article  Google Scholar 

  • Power SB, Kociuba G (2011) The impact of global warming on the Southern Oscillation Index. Clim Dyn 37:1745–1754

    Article  Google Scholar 

  • Roots OO, Roose A, Eerme K (2011) Remote sensing of climate change, long-term monitoring of air pollution and stone material corrosion in Estonia. Int J Remote Sens 32:9691–9705

    Article  Google Scholar 

  • Ruelle D (1991) Chance and chaos. Princeton University Press, Princeton

    Google Scholar 

  • Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool HM, Pan HL, Moorthi S, Behringer D, Stokes D, Pena M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP Climate Forecast System. J Clim 19:3483–3517

    Article  Google Scholar 

  • Sarlis NV, Skordas ES, Varotsos PA (2011) The change of the entropy in natural time under time-reversal in the Olami-Feder-Christensen earthquake model. Tectonophysics 513:49–53

    Article  Google Scholar 

  • Schiermeier Q (2011) Climate cycles drive civil war. Nature News 476:406–407

    Article  Google Scholar 

  • Schopf PS, Suarez MJ (1990) Ocean wave dynamics and the time scale of ENSO. J Phys Oceanogr 20:629–645

    Article  Google Scholar 

  • Shukla J, Anderson J, Baumhefner D, Brankovic C, Chang Y, Kalnay E, Marx L, Palmer T, Paolino D, Ploshay J, Schubert S, Straus D, Suarez M, Tribbia J (2000) Dynamical seasonal prediction. Bull Am Meteorol Soc 81:2593–2606

    Article  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, Yoccoz NG, Adlandsvik B (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proc R Soc Lond B 270:2087–2096

    Article  Google Scholar 

  • Stone RC, Hammer GL, Marcussen T (1996) Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature 384:252–255

    Article  Google Scholar 

  • Tippett MK, Barnston AG, Li SH (2012) Performance of recent multimodel ENSO forecasts. J Appl Meteorol Climatol 51:637–654

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Trenberth KE, Hoar TJ (1997) El Niño and climate change. Geophys Res Lett 24:3057–3060

    Article  Google Scholar 

  • Troccoli A (2010) Seasonal climate forecasting. Meteorol Appl 17:251–268

    Google Scholar 

  • Troup AJ (1965) The Southern Oscillation. Q J R Meteorol Soc 91:490–506

    Article  Google Scholar 

  • Tzanis C, Varotsos CA (2008) Tropospheric aerosol forcing of climate: a case study for the greater area of Greece. Int J Remote Sens 29:2507–2517

    Article  Google Scholar 

  • Uyeda S, Kamogawa M, Tanaka H (2009) Analysis of electrical activity and seismicity in the natural time domain for the volcanic-seismic swarm activity in 2000 in the Izu Island region, Japan. J Geophys Res. doi:10.1029/2007JB005332

    Google Scholar 

  • Varotsos C (2005) Power-law correlations in column ozone over Antarctica. Int J Remote Sens 26:3333–3342

    Article  Google Scholar 

  • Varotsos CA (2013) The global signature of the ENSO and SST-like fields. Theor Appl Climatol 113:197–204

    Article  Google Scholar 

  • Varotsos CA, Tzanis C (2012) A new tool for the study of the ozone hole dynamics over Antarctica. Atmos Environ 47:428–434

    Article  Google Scholar 

  • Varotsos CA, Cracknell AP, Tzanis C (2012a) The exceptional ozone depletion over the Arctic in January-March 2011. Remote Sens Lett 3:343–352

  • Varotsos C, Ondov J, Tzanis C, Ozturk F, Nelson M, Ke H, Christodoulakis J (2012b) An observational study of the atmospheric ultra-fine particle dynamics. Atmos Environ 59:312–319

  • Varotsos C, Efstathiou M, Tzanis C (2009) Scaling behaviour of the global tropopause. Atmos Chem Phys 9:677–683

    Article  Google Scholar 

  • Varotsos CA, Franzke CLE, Efstathiou MN, Degermendzhi AG (2014) Evidence for two abrupt warming events of SST in the last century. Theor Appl Climatol 116:51–60

    Article  Google Scholar 

  • Varotsos CA, Ondov JM, Cracknell AP, Efstathiou MN, Assimakopoulos MN (2006) Long-range persistence in global Aerosol Index dynamics. Int J Remote Sens 27:3593–3603

  • Varotsos PA, Sarlis NV, Skordas ES (2002) Long-range correlations in the electric signals that precede rupture. Phys Rev E. doi:10.1103/PhysRevE.66.011902

    Google Scholar 

  • Varotsos PA, Sarlis NV, Tanaka HK, Skordas ES (2005) Some properties of the entropy in the natural time. Phys Rev E. doi:10.1103/PhysRevE.71.032102

    Google Scholar 

  • Varotsos PA, Sarlis NV, Skordas ES, Lazaridou MS (2007) Identifying sudden cardiac death risk and specifying its occurrence time by analyzing electrocardiograms in natural time. Appl Phys Lett. doi:10.1063/1.2768928

    Google Scholar 

  • Varotsos PA, Sarlis NV, Skordas ES (2011) Natural time analysis: the new view of time. Precursory seismic electric signals, earthquakes and other complex time series. Springer, Heidelberg, ISBN 978-3-642-16448-4, doi: 10.1007/978-3-642-16449-1, 476

  • Wang B (1995) Interdecadal changes in El Niño onset in the last four decades. J Clim 8:267–285

    Article  Google Scholar 

  • Wang B, Wang Y (1996) Temporal structure of the Southern Oscillation as revealed by waveform and wavelet analysis. J Clim 9:1586–1598

    Article  Google Scholar 

  • Wang S-Y, L’Heureux M, Chia H-H (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett. doi:10.1029/2012GL050909

    Google Scholar 

  • Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull Am Meteorol Soc 80:245–255

    Article  Google Scholar 

  • Xue Y, Ai J, Wan W, Guo H, Li Y, Wang Y, Guang J, Mei L, Xu H (2011) Grid-enabled high-performance quantitative aerosol retrieval from remotely sensed data. Comput Geosci-UK 37:202–206

    Article  Google Scholar 

  • Zhang R-H, Rothstein LM, Busalacchi AJ (1998) Origin of upper-ocean warming and El Niño change on decadal scales in the tropical Pacific Ocean. Nature 391:879–883

    Article  Google Scholar 

  • Ziemke JR, Chandra S, Herman J, Varotsos C (2000) Erythemal weighted ultraviolet trends over northern latitudes. Radiat Prot Dosim 91:157–160

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Varotsos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varotsos, C.A., Tzanis, C. & Cracknell, A.P. Precursory signals of the major El Niño Southern Oscillation events. Theor Appl Climatol 124, 903–912 (2016). https://doi.org/10.1007/s00704-015-1464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1464-4

Keywords

Navigation