Skip to main content
Log in

Spatial analysis of the temperature trends in Serbia during the period 1961–2010

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The spatial analysis of annual and seasonal temperature trends in Serbia during the period 1961–2010 was carried out using mean monthly data from 64 meteorological stations. Change year detection was achieved using cumulative sum charts. The magnitude of trends was derived from the slopes of linear trends using the least square method. The same formalism of least square method was used to assess the statistical significance of the determined trends. Maps of temperature trends were generated by applying a spatial regression method to visualize the detected tendencies. The obtained results indicate a negative temperature trend for the period before the change year except for winter and a more pronounced positive trend after the change year. Besides being more pronounced, the vast majority of trends after the change year were also clearly statistically significant. Our estimate of the average temperature trend over Serbia is in agreement with those obtained at the global and European scale. Calculated global autocorrelation statistics (Moran’s I) indicate an apparent random spatial pattern of temperature trends across the Serbia for both periods before and after the change year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexandersson H, Moberg A (1997) Homogenization of Swedish temperature data. Part I: homogeneity test for linear trends. Int J Climatol 17:25–34

    Article  Google Scholar 

  • Bajat B, Pejović M, Luković J, Manojlović P, Ducić V, Mustafić S (2012) Mapping average annual precipitation in Serbia (1961–1990) by using regression kriging. Theor Appl Climatol 112:1–13

    Article  Google Scholar 

  • Ballester J, Rodò X, Giorgi F (2010) Future changes in central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35:1191–1205

    Article  Google Scholar 

  • Balling RC, Michaels PJ, Knappenberger PC (1998) Analysis of winter and summer warming rates in gridded temperature timeseries. Clim Res 9:175–181

    Article  Google Scholar 

  • Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126

    Article  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111, D12106. doi:10.1029/2005JD006548

    Article  Google Scholar 

  • Brunet M, Sigró J, Saladie O, Aguilar E, Jones PD, Moberg A, Walther A, López D (2005) Spatial patterns of long-term spanish temperature change. Geophys Res Abs 7:04007

    Google Scholar 

  • Brunet M, Saladié O, Jones PD, Sigrò J, Aguilar E, Moberg A, Lister D, Walther A, Lopez D, Almarza C (2006) The development of a new dataset of Spanish daily adjusted temperature series (SDATS) (1850–2003). Int J Climatol 26:1777–1802

    Article  Google Scholar 

  • Brunet M, Jones PD, Sigro J, Saladie O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850-2005. J Geophys Res 112, D12117. doi:10.1029/2006JD008249

    Article  Google Scholar 

  • del Río S, Herrero L, Pinto-Gomes C, Penas A (2011) Spatial analysis of mean temperature trends in Spain over the period 1961-2006. Global Planet Change 78:65–75

    Article  Google Scholar 

  • Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112, D15103. doi:10.1029/2007JD008510

    Article  Google Scholar 

  • Ducić V, Radovanović M (2005) Klima Srbije (climate of Serbia). Zavod za udžbenike i nastavna sredstva, Belgrade, p 212 (in Serbian)

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling and impacts. Science 289:2068–2074

    Article  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman & Hall, New York

    Book  Google Scholar 

  • Ewan WD (1963) When and how to use CUSUM charts. Technometrics 5:1–32

    Article  Google Scholar 

  • Feidas H, Makrogiannis T, Bora-Senta E (2004) Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: 1955-2001. Theor Appl Climatol 79:185–208

    Article  Google Scholar 

  • Gay-Garcia C, Estrada F, Sanchez A (2009) Global and hemispheric temperatures revisited. Clim Change 94:333–349

    Article  Google Scholar 

  • Gómez JD, Etchevers JD, Monterroso AI, Gay C, Campo J, Martínez M (2008) Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information. Atmósfera 21:35–56

    Google Scholar 

  • Gurevich G, Hadad Y, Ofir A, Ohayon B (2011) Statistical analysis of temperature changes in Israel: an application of change point detection and estimation techniques. Glob Nest J 13:215–228

    Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North-Atlantic Oscillation—regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change. The physical science basis. In: Solomon S, Qin D, Manning M et al (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Johnson NL (1961) A simple theoretical approach to cumulative sum control charts. J Am Stat Ass 56:83–92

    Google Scholar 

  • Johnson NL, Leone FC (1962) Cumulative sum control charts—mathematical principles applied to their construction and use. Ind Qual Control 18:15–21

    Google Scholar 

  • Kilibarda M, Bajat B (2012) PlotGoogleMaps: the R-based web-mapping tool for thematic spatial data. Geomatica 66:37–49

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Climate 16:3665–3680

    Article  Google Scholar 

  • Klein Tank AMG, Wijngaard JB, Können GP et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Knežević S, Tošić I, Unkašević M, Pejanović G (2014) The influence of the East Atlantic Oscillation to climate indices based on the daily minimum temperatures in Serbia. Theor Appl Climatol 116:435–446

    Article  Google Scholar 

  • Koch KR (1988) Parameter estimation and hypothesis testing in linear models. Springer Verlag, Berlin

    Book  Google Scholar 

  • Lee J, Wong DWS (2005) Statistical analysis of geographic information with ArcView GIS and ArcGIS. Wiley, New York, p 446

    Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503

    Article  Google Scholar 

  • Moberg A, Jones PD (2005) Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901-99. Int J Climatol 25:1149–1171

    Article  Google Scholar 

  • Nastos PT, Philandras CM, Founda D, Zerefos CS (2011) Air temperature trends related to changes in atmospheric circulation in the wider area of Greece. Int J Remote Sens 32:737–750

    Article  Google Scholar 

  • O’Sullivan D, Unwin D (2003) Geographical information analysis. Wiley, New Jersey, p 436

    Google Scholar 

  • Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27:286–306

    Article  Google Scholar 

  • Page ES (1954) Continuous inspection schemes. Biometrika 41:100–115

    Article  Google Scholar 

  • Parry ML (ed) (2000) Assessment of potential effects and adaptations for climate change in Europe: summary and conclusions. Jackson Environment Institute, University of East Aglia, Norwich, 320 pp

    Google Scholar 

  • Perčec Tadić M (2010) Gridded Croatian climatology for 1961–1990. Theor Appl Climatol 102:87–103

    Article  Google Scholar 

  • Philandras CM, Nastos PT, Repapis CC (2008) Air temperature variability and trends over Greece. Global Nest Journal 10:273–285

    Google Scholar 

  • Salas JD, Delleur JW, Yevjevich VM, Lane WL (1980) Applied modeling of hydrologic time series: Littleton. Water Research Publications, Colorado

    Google Scholar 

  • Smith TM, Reynolds RW (2005) A global merged land and sea surface temperature reconstruction based on historical observations (1880-1997). J Climate 18:2021–2036

    Article  Google Scholar 

  • Sun JQ, Wang HJ, Yuan W (2009) Role of the tropical Atlantic sea surface temperature in the decadal change of the summer North Atlantic Oscillation. J Geophys Res 114, D20110

    Article  Google Scholar 

  • Toreti A, Desiato F (2008) Temperature trend over Italy from 1961 to 2004. Theor Appl Climatol 91:51–58

    Article  Google Scholar 

  • Tošić I (2005) Analysis of temperature and precipitation time series. Ph.D. thesis, Faculty of Physics, University of Belgrade, Belgrade, 164 pp (in Serbian)

  • Unkašević M, Radinović Đ (2000) Statistical analysis of daily maximum and monthly precipitation at Belgrade. Theor Appl Climatol 66:241–249

    Article  Google Scholar 

  • Unkašević M, Tošić I (2009) An analysis of heat waves in Serbia. Global Planet Change 65:17–26

    Article  Google Scholar 

  • Unkašević M, Tošić I (2013) Trends in temperature indices over Serbia: relationships to large-scale circulation patterns. Int J Climatol 33:3152–3161

    Article  Google Scholar 

  • Unkašević M, Vujović D, Tošić I (2005) Trends in extreme summer temperatures at Belgrade. Theor Appl Climatol 82:9–205

    Google Scholar 

  • World Meteorological Organization (WMO) (2002) Technical document 1125, GCOS-76. Geneva, Switzerland

  • Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Coche C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-Vide J, Yang C (2002) Trends of extreme temperature in Europe and China based on daily observation. Clim Change 53:355–392

    Article  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge data provided by the Republic Hydrometeorological Service of Serbia. NAO and EA Index values are downloaded from ftp://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/ea_index.tim. This study was supported by the Serbian Ministry of Education, Science and Technological Development, under Grants No. III 43007, III 47014, TR 36035, TR 36020, and 176013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Tošić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajat, B., Blagojević, D., Kilibarda, M. et al. Spatial analysis of the temperature trends in Serbia during the period 1961–2010. Theor Appl Climatol 121, 289–301 (2015). https://doi.org/10.1007/s00704-014-1243-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1243-7

Keywords

Navigation