Skip to main content
Log in

Spectral radiance and sky luminance in Antarctica: a case study

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

Sky luminance and spectral radiance has been characterised at Neumayer, Antarctica for selected situations during the austral summer 2003/04. Luminance has also been measured at Boulder, Colorado, USA in June 2003. The high reflectivity of the surface (albedo) in Antarctica, reaching values up to 100% in the ultraviolet (UV) and visible part of the solar spectrum due to snow cover, modifies the radiation field considerably when compared to mid-latitudes. A dependence of luminance and spectral radiance on solar zenith angle (SZA) and surface albedo has been identified. For snow and cloudless sky, the horizon luminance exceeds the zenith luminance by as much as a factor of 8.2 and 7.6 for a SZA of 86° and 48°, respectively. In contrast, over grass this factor amounts to 4.9 for a SZA of 86° and a factor of only 1.4 for a SZA of 48°. Thus, a snow surface with high albedo can enhance horizon brightening compared to grass by a factor of 1.7 for low sun at a SZA of 86° and by a factor of 5 for high sun at a SZA of 48°. For cloudy cases, zenith luminance and radiance exceed the cloudless value by a factor of 10 due to multiple scattering between the cloud base and high albedo surface. Measurements of spectral radiance show increased horizon brightening for increasing wavelengths and generally confirm the findings for luminance. Good agreement with model results is found for some cases; however there are also large deviations between measured and modelled values especially in the infrared. These deviations can only partly be explained by measurement uncertainties; to completely resolve the differences between model and measurement further studies need to be performed, which will require an improvement of modelling the spectral radiance. From the present study it can be concluded that a change in albedo conditions, which is predicted as a consequence of climate change, will significantly change the radiation conditions in polar regions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AF Bais BG Gardiner H Slaper M Blumthaler G Bernhard R McKenzie AR Webb G Seckmeyer B Kjeldstad T Koskela J Gröbner JB Kerr S Kazadsis K Leszczynski D Wardle C Brogniez C Josefsson D Gillotay H Reinen P Weihs T Svenoe P Eriksen F Kuik A Redondas (2001) ArticleTitleThe SUSPEN intercomparison of ultraviolet spectroradiometers J Geophys Res 106 12509–12526 Occurrence Handle10.1029/2000JD900561

    Article  Google Scholar 

  • G Bernhard G Seckmeyer (1997) ArticleTitleNew entrance optics for solar spectral UV measurements Photochem Photobiol 65 923–930

    Google Scholar 

  • G Bernhard G Seckmeyer (1999) ArticleTitleUncertainty of measurements of spectral solar UV irradiance J Geophys Res 104 14321–14345 Occurrence Handle10.1029/1999JD900180

    Article  Google Scholar 

  • Bernhard G, Booth C, Ehramjian J (2002) Comparison of measured and modelled spectral ultraviolet irradiance at Antarctic stations used to determine biases in total ozone data from various sources. In: Slusser J, Herman J, Gao W (eds) Ultraviolet ground and space-based measurements, models and effects. Vol. 4482 of Proceedings of SPIE, Bellingham, Washington, D.C., pp 115–126

  • Bernhard G, Booth C, Ehramjian J (2004) Version 2 data of the National Science Foundations Ultraviolet Radiation Monitoring Network: South Pole. J Geophys Res 109: doi:10.1029/2004JD004937

  • M Blumthaler J Gröbner M Huber W Ambach (1996) ArticleTitleMeasuring spectral and spatial variations of UVA and UVB sky radiance Geophys Res Lett 23 547–550 Occurrence Handle10.1029/96GL00248

    Article  Google Scholar 

  • A Dahlback K Stamnes (1991) ArticleTitleA new spherical model for computing the radiation field available for photolysis and heating at twilight Planet Space Sci 39 671–683 Occurrence Handle10.1016/0032-0633(91)90061-E

    Article  Google Scholar 

  • DIN 5031 (1982) Strahlungsphysik im optischen Bereich und Lichttechnik. Beuth Verlag, 8 pp

  • Edwards DP (1992) GENLN2: A general line-by-line atmospheric transmittance and radiance model: Version 3.0 description and users guide, Tech. Rep. NCAR/TN-367 + STR, National Center for Atmospheric Research (NCAR), Boulder, Colorado

  • Eltermann K-U (1968) UV, visible and IR attenuation for altitudes to 50 km, Tech. Rep. AFCRL-68-0153, Air Force Cambridge Research Laboratories, Bedford, MA, USA

  • U Feister R Grewe (1995) ArticleTitleSpectral Albedo Measurements in the UV and visible region over different types of surfaces Photochem Photobiol 62 736–744

    Google Scholar 

  • R Grant G Heisler (1997) ArticleTitleObscured overcast sky radiance distributions for ultraviolet and photosynthetically active radiation J Appl Meteor 36 1337–1345 Occurrence Handle10.1175/1520-0450(1997)036<1336:OOSRDF>2.0.CO;2

    Article  Google Scholar 

  • R Grant G Heisler W Gao (1997a) ArticleTitleClear sky radiance distributions in ultraviolet wavelength bands Theor Appl Climatol 56 123–135 Occurrence Handle10.1007/BF00866422

    Article  Google Scholar 

  • R Grant G Heisler W Gao (1997b) ArticleTitleUltraviolet sky radiance distributions of translucent overcast skies Theor Appl Climatol 58 129–139 Occurrence Handle10.1007/BF00865013

    Article  Google Scholar 

  • Gröbner J (1996) Ultraviolet solar radiance measurements using a high precision spectroradiometer. PhD Thesis, Naturwissenschaftliche Fakultät der Leoplold-Franzens-Universität Innsbruck, Innsbruck, Austria: 101 pp

  • Huber M, Blumthaler M, Schreder J, Schallhart B, Lenoble J (2004) Effect of inhonogeneous surface albedo on diffuse UV sky radiance at a highaltitude site. J Geophys Res 109: doi:10.1029/2003JD004013

  • U Karsten K Bischof D Hanelt D Wiencke (1999) ArticleTitleThe effect of ultraviolet radiation on photosynthesis an ultraviolet-absorbing substances in the endemic Arctic macroalga Devaleraea ramentacea (Rhodophyta) Physiologia Plantarum 105 58–66 Occurrence Handle10.1034/j.1399-3054.1999.105110.x

    Article  Google Scholar 

  • PW Kiedron JJ Michalsky JL Berndt LC Harrison (1999) ArticleTitleComparison of spectral irradiance standards used to calibrate shortwave radiometers and spectroradiometers Appl Opt 38 2432–2439

    Google Scholar 

  • Kurudz R (1992) Synthetic infrared spectra. In: Proceedings of the 154th Symposium of the International Astronomical Union (IAU), Tuscon, Arizona. Kluwer, Acad., Norwell, MA, 1365–1368

  • A Kylling A Dahlback B Mayer (2000) ArticleTitleThe effect of clouds and surface albedo on UV irradiances at a high latitude site Geophys Res Lett 27 1411–1414 Occurrence Handle10.1029/1999GL011015

    Article  Google Scholar 

  • J Lenoble (1993) Atmospheric radiative transfer A. Deepak Publishing Hampton, VA 532

    Google Scholar 

  • J Lenoble (1998) ArticleTitleModelling of the influence of snow reflectance on ultraviolet irradiance for cloudless sky Appl Opt 37 2441–2447

    Google Scholar 

  • Lenoble J (2004) Importance of polaristion in calculations of radiance and irradiance. In: Seckmeyer G, Martin T, Ali T (eds) European database for UV climatology and evaluation. Final report to the commission of the European communities, contract No. EVK2-CT-199900028, 100 pp

  • Y Liu K Voss (1997) ArticleTitlePolarized radiance distribution measurements of skylight. II. Experiment and data Appl Opt 36 8753–8764

    Google Scholar 

  • B Mayer G Seckmeyer A Kylling (1997) ArticleTitleSystematic long-term comparison of spectral UV measurements and UVSPEC modelling results J Geophys Res 102 8755–8767 Occurrence Handle10.1029/97JD00240

    Article  Google Scholar 

  • B Mayer A Kylling (2005) ArticleTitleTechnical note: The libRadtran software package for radiative transfer calculations description and examples of use Atmos Chem Phys Discuss 5 1319–1381 Occurrence Handle10.5194/acpd-5-1319-2005

    Article  Google Scholar 

  • RD McPeters GJ Labow (1996) ArticleTitleAn assessment of the accuracy of 14.5 years of Nimbus 7 TOMS Version 7 ozone data by comparison with the Dobson network Geophys Res Lett 23 3695–3698 Occurrence Handle10.1029/96GL03539

    Article  Google Scholar 

  • Meister G, Abel p, Carder K, Chapin A, Clark D, Cooper J, Davis C, English D, Fargion G, Feinholz M, Frouin R, Hoge F, Korwan D, Lanzin G, McClain C, McLean S, Menzies D, Poteau A, Robertson J, Sherman J, Voss K, Yungel J (2003) The Second SIMBIOS Radiometric Intercomparison (SIMRIC-2), March–November 2002, report NASA/TM-2003, Greenbelt, Maryland: Goddard Space Flight Center, 65 pp

  • MI Mishchenko AA Lacis LD Travis (1994) ArticleTitleErrors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres J Quant Spectrosc Radiat Transfer 51 491–510 Occurrence Handle10.1016/0022-4073(94)90149-X

    Article  Google Scholar 

  • J Mueller C Pietras S Hooker R Austin M Miller K Knobelspiesse R Fouin B Holben K Voss (2003) Instrument specifications, characterization and calibration, ocean optics protocols for satellite ocean color sensor validation revision 4 NumberInSeriesII Goddard Space Flight Center Greenbelt, Maryland 57

    Google Scholar 

  • S Nichol G Pfister G Bodeker R McKenzie S Vood G Bernhard (2003) ArticleTitleModeration of cloud reduction of UV in the Antarctic due to high surface albedo J Appl Meteor 42 1174–1183 Occurrence Handle10.1175/1520-0450(2003)042<1174:MOCROU>2.0.CO;2

    Article  Google Scholar 

  • Piel C (2004) Variability of chemical and physical parameters of aerosol in the Antarctic troposphere. Reports on Polar and Marine Research 476. Bremerhaven, Germany: Alfred Wegener Institute for Polar and Marine Research, 157 pp

  • Prather M, Ehhalt D, Dentener F, Derwent R, Dlugokencky E, Holland E, Isaksen I, Katima J, Kirchhoff V, Mathson P, Midgley P, Wang M (2001) Atmosperic chemistry and greenhouse gases in climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, pp 239–287

  • P Ricchiazzi S Young C Gautier D Sowle (1998) ArticleTitleA research and teaching software tool for plane-parallel radiative transfer in the Earths atmosphere Bull Amer Meteor Soc 79 2101–2114 Occurrence Handle10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2

    Article  Google Scholar 

  • H Schwander B Mayer A Ruggaber A Albold G Seckmeyer P Köpke (1999) ArticleTitleMethod to determine snow albedo values in the UV for radiative transfer modelling Appl Opt 38 3869–3875 Occurrence Handle10.1364/AO.38.003869

    Article  Google Scholar 

  • Seckmeyer G (1997) Die genaue Messung und Simulation der solaren UV-Strahlung, Habilitationsschrift, Technische Universität Ilmenau, 116 pp

  • Seckmeyer G, Bais A, Bernhard G, Blumthaler M, Eriksen P, McKenzie RL, Roy C, Miyauchi M (2001) Instruments to measure solar ultraviolet radiation, part I: spectral instruments. WMOGAW report 126, 30 pp

  • K Stamnes SC Tsay W Wiscombe K Jayaweera (1988) ArticleTitleNumerically stable algorithm for discreteordinate-method radiative transfer in multiple scattering and emitting layered media Appl Opt 27 2502–2509 Occurrence Handle10.1364/AO.27.002502

    Article  Google Scholar 

  • T Takao M Aono T Kishi K Sakurai O Ijima M Takawa O Narita M Shitamichi (1999) ArticleTitleUltraviolet spectral irradiance observations at Syowa Station, Antarctica 1991–1996 The Geophysical Magazine Series 2 95–107

    Google Scholar 

  • P Tregenza (1987) ArticleTitleSubdivision of the sky hemisphere for luminance measurements Lightning Research and Technologies 19 13–14 Occurrence Handle10.1177/096032718701900103

    Article  Google Scholar 

  • M van Weele TJ Martin M Blumthaler C Brogniez PN den Outer O Engelsen J Lenoble B Mayer G Pfister A Ruggaber B Walravens P Weihs BG Gardiner D Gillotay D Haferl A Kylling G Seckmeyer WMF Wauben (2000) ArticleTitleFrom model intercomparison toward benchmark UV spectra for six real atmospheric cases J Geophys Res 105 4915–4925 Occurrence Handle10.1029/1999JD901103

    Article  Google Scholar 

  • P Weihs A Webb S Hutchinson G Middelton (2000) ArticleTitleMeasurements of the diffuse UV sky radiance during broken cloud conditions J Geophys Res 105 4937–4944 Occurrence Handle10.1029/1999JD900260

    Article  Google Scholar 

  • Wuttke S, Benhard G, Ehramjian J, McKenzie R, Johnston P, ONeill M, Seckmeyer G (2005) New spectroradiometers complying with the NDSC standards. J Atmos Oceanic Technol (in press)

  • Wuttke S, Seckmeyer G, König-Langlo G (2005a) Measurements of spectral snow albedo at Neumayer, Antarctica. Annales Geophysicae (accepted)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wuttke, S., Seckmeyer, G. Spectral radiance and sky luminance in Antarctica: a case study. Theor. Appl. Climatol. 85, 131–148 (2006). https://doi.org/10.1007/s00704-005-0188-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-005-0188-2

Keywords

Navigation