Skip to main content

Advertisement

Log in

Sensitivity to PBL parameterizations on the marine layer cloud simulations in the southern Indian Ocean

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

In this study, a suite of ten Weather Research and Forecasting (WRF) model simulations is conducted using various choices of local and non-local representations of vertical mixing adopted in the planetary boundary layer (PBL) parameterizations to assess the boreal summertime marine layer cloud environment in the southern Indian Ocean (SIO). The local, non-local, and hybrid type PBL schemes used in the simulations are generally able to produce the pertinent features of the marine layer embedded with stratocumulus clouds in the SIO region, viz., nocturnal coverage of low clouds with warm cloud tops, well-mixed marine layer, inversion capping, strong temperature and moisture jumps across the inversion layer, cloud water generation and its coupling with cloud-top radiative cooling, as conceptually envisaged in earlier investigations. However, there is a large spatial variability noticed in the simulated low clouds over the SIO region. While the satellite diagnosed cloud liquid water paths (LWPs) are noted as high as 0.4 mm in the region 60° E–90° E, 15° S–25° S, the simulated cloud LWPs show a large mesoscale variability exhibiting a range of values between 0.04 and 2.8 mm, corresponding to cloud depths as small [high] as 200 [1700] m. It is further noted that LWPs reproduced from hybrid PBL schemes employed with eddy diffusivity mass flux (EDMF) formulation are closer to the observed estimates in the SIO region. While the non-local PBL mixing schemes tend to produce more organized sheeted low-cloud layers, the local closure schemes tend to produce more discreteness in the low-cloud decks and also exhibit substantial cloud depth variability. In addition, the coupling of in-cloud turbulence in association with cloud-top radiative cooling and sub-cloud layer turbulence are not uniquely reproduced by these schemes. The inferences from this study suggest that non-local/hybrid type of PBL parameterizations accounting for stratocumulus cloud-top driven mixing processes shows greater promise in the reproduction of low-clouds in the SIO region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The reanalysed datasets (ERA-5, MERRA-2), satellite products (ISCCP-H, RSS-SSMIS) and the sounding dataset (http://weather.uwyo.edu) used in this study are available online. The INSAT-3D satellite imagery can be obtained from the India Meteorological Department (http://mosdac.gov.in/insat-3d) on request. Datasets generated during and/or analysed in this study are available from the corresponding author on reasonable request.

References

  • Ackerman AS et al (2009) Large-eddy simulations of a drizzling, stratocumulus-topped marine boundary layer. Mon Weather Rev 137:1803–1110

    Article  Google Scholar 

  • Albrecht BA, Randall DA, Nicholls S (1988) Observations of marine stratocumulus clouds during FIRE. Bull Am Meteorol Soc 69:618–626

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Ayantika DC et al (2021) Understanding the combined effects of global warming and anthropogenic aerosol forcing on the south Asian monsoon. Clim Dyn 56:1643–1662

    Article  Google Scholar 

  • Bony S et al (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482

    Article  Google Scholar 

  • Bony S, Dufresne JL (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophy Res Lett 32:L20806. https://doi.org/10.1029/2005GL023851

    Article  Google Scholar 

  • Bony S, Collins WD, Fillmore DW (2000) Indian Ocean low clouds during the winter monsoon. J Clim 13:2028–2043

    Article  Google Scholar 

  • Bougeault P, Lacarrère L (1989) Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon Weather Rev 117:1872–1890

    Article  Google Scholar 

  • Bretherton CS (2009) The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J Clim 22:3449–3469

    Article  Google Scholar 

  • Bretherton CS (2015) Insights into low-latitude cloud feedbacks from high-resolution models. Philos Trans R Soc A 373:20140415. https://doi.org/10.1098/rsta.2014.0415

    Article  Google Scholar 

  • Bretherton CS, Park S (2009) A new moist turbulence parameterization in the Community Atmosphere Model. J Clim 22:3422–3448

    Article  Google Scholar 

  • Brueck M, Nuijens L, Stevens B (2015) On the seasonal and synoptic time-scale variability of the North Atlantic trade wind region and its low-level clouds. J Atmos Sci 72:1428–1446

    Article  Google Scholar 

  • Caldwell P, Bretherton CS, Wood W (2005) Mixed-layer budget analysis of the diurnal cycle of entrainment in southeast Pacific stratocumulus. J Atmos Sci 62:3775–3791

    Article  Google Scholar 

  • Caldwell PM, Zhang YY, Klein SA (2013) CMIP3 subtropical stratocumulus cloud feedback interpreted through a mixed-layer model. J Clim 26:1607–1625

    Article  Google Scholar 

  • Charba JP, Reynolds DW, McDonald BE, Carter GM (2003) Comparative verification of recent quantitative precipitation forecasts in the National Weather Service: a simple approach for scoring forecast accuracy. Weather Forecast 18:161–183

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Cherchi A et al (2018) The response of subtropical highs to climate change. Curr Clim Change Rep 4:371–382

    Article  Google Scholar 

  • Cohen AE, Cavallo SM, Coniglio MC, Brooks HE (2015) A review of planetary boundary parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Weather Forecast 30:591–612

    Article  Google Scholar 

  • Danabasoglu G et al (2020) The community earth system model version 2 (CESM2). J Adv Mod Earth Sys 12:e2019MS001916. https://doi.org/10.1029/2019MS001916

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA–Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3363–3391

    Article  Google Scholar 

  • Ek MB et al (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophy Res 108(D22):8851

    Google Scholar 

  • Fan J, Wang Y, Rosenfeld D, Liu X (2016) Review of aerosol-cloud interactions: mechanisms, significance, and challenges. J Atmos Sci 73:4221–4252

    Article  Google Scholar 

  • Findlater J (1977) Observational aspects of the low-level cross-equatorial jet stream of the western Indian Ocean. Pure Appl Geophys 115:1251–1262

    Article  Google Scholar 

  • Galperin B, Sukoriansky S (2010) Geophysical flows with anisotropic turbulence and dispersive waves: flows with stable stratification. Ocean Dyn 60:1319–1337

    Article  Google Scholar 

  • Gelaro R et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30:5419–5454

    Article  Google Scholar 

  • Gettleman A, Sherwood SC (2016) Processes responsible for cloud feedback. Curr Clim Change Rep 2:179–189

    Article  Google Scholar 

  • Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377

    Article  Google Scholar 

  • Grubisić V, Vellore R, Huggins AW (2005) Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: Sensitivity to the microphysical parameterization and horizontal resolution. Mon Weather Rev 133:2834–2859

    Article  Google Scholar 

  • Han J et al (2016) Implementation in the NCEP GFS of a hybrid eddy-diffusivity mass flux (EDMF) boundary layer parameterization with dissipative heating and modified stable boundary layer mixing. Weather Forecast 31:341–352

    Article  Google Scholar 

  • Han J, Bretherton CS (2019) TKE-based moist eddy diffusivity mass flux (EDMF) parameterization for vertical turbulent mixing. Weather Forecast 34:869–886

    Article  Google Scholar 

  • Han J, Pan HL (2011) Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weather Forecast 26:520–533

    Article  Google Scholar 

  • Hanson HP (1991) Marine stratocumulus climatologies. Int J Climatol 11:147–164

    Article  Google Scholar 

  • Hartmann DL (2016) Global physical climatology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Hartmann DL, Short DA (1980) On the use of Earth radiation budget statistics for studies of clouds and climate. J Atmos Sci 37:1233–1250

    Article  Google Scholar 

  • Hartmann DL, Ockert-Bell ME, Michelsen ML (1992) The effect of cloud type on Earth’s energy balance: Global analysis. J Clim 5:1281–1304

    Article  Google Scholar 

  • Hersbach et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049

    Article  Google Scholar 

  • Holtslag AA, Boville BA (1993) Local versus nonlocal boundary layer diffusion in a global climate model. J Clim 6:1825–1842

    Article  Google Scholar 

  • Hong SY (2010) A new stable boundary-layer mixing scheme and its impact on the simulated East Asia summer monsoon. Q J R Meteorol Soc 136:1481–1496

    Article  Google Scholar 

  • Hong SY, Dudhia J (2012) Next-generation numerical weather prediction: bridging parameterization, explicit clouds, and large eddies. Bull Am Meteorol Soc 93:ES6–ES9. https://doi.org/10.1175/2011BAMS3224.1

    Article  Google Scholar 

  • Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Houze RA (2014) Cloud dynamics. Academic Press, Cambridge

    Google Scholar 

  • Huang HY, Hall A, Teixeira J (2013) Evaluation of the WRF PBL parameterizations for marine boundary layer clouds: cumulus and stratocumulus. Mon Weather Rev 141:2265–2271

    Article  Google Scholar 

  • Janjic ZL (1994) The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Jimenez PA et al (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140:898–918

    Article  Google Scholar 

  • Juliano TW et al (2019) Marine boundary layer clouds with coastally trapped disturbances: observations and Model simulations. J Atmos Sci 76:2963–2993

    Article  Google Scholar 

  • Kalmus P, Lebsock M, Teixeira J (2014) Observational boundary layer energy and water budgets of the stratocumulus-to-cumulus transition. J Clim 27:9155–9170

    Article  Google Scholar 

  • Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606

    Article  Google Scholar 

  • Klein SA, Hartmann DL, Norris JR (1995) On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J Clim 8:1140–1155

    Article  Google Scholar 

  • Kloesel KA (1992) A 70-year history of marine stratocumulus cloud field experiments off the coast of California. Bull Am Meteorol Soc 73:1581–1586

    Article  Google Scholar 

  • Koračin D, Dorman C (2001) Marine atmospheric boundary layer divergence and clouds along California in June 1996. Mon Wea Rev 129:2040–2056

    Article  Google Scholar 

  • Krishnamurti TN, Bhalme HN (1976) Oscillations of monsoon system. Part I: observational aspects. J Atmos Sci 33:1937–1954

    Article  Google Scholar 

  • Krishnamurti TN, Stefanova L, Misra V (2013) Tropical meteorology: an introduction. Springer, New York

    Book  Google Scholar 

  • Krishnan R et al (2015) A short perspective on the Mascarene High and the abnormal Indian monsoon during 2015. Indian Ocean Bubble 4:17–19

    Google Scholar 

  • Kwon YC, Hong SY (2017) A mass flux cumulus parameterization scheme across gray-zone resolutions. Mon Weather Rev 145:583–598

    Article  Google Scholar 

  • Lauer A et al (2010) The impact of global warming on marine boundary layer clouds over the eastern Pacific—a regional model study. J Clim 23:5844–5863

    Article  Google Scholar 

  • Lenschow DH et al (1988) Dynamics and chemistry of marine stratocumulus (DYCOMS) experiment. Bull Am Meteorol Soc 69:1058–1067

    Article  Google Scholar 

  • Li L, Li W, Kushnir Y (2012) Variation of the North Atlantic subtropical high western ridge and its implication to southeastern US summer precipitation. Clim Dyn 39:1401–1412

    Article  Google Scholar 

  • Lilly DK (1968) Models of cloud topped mixed layers under a strong inversion. Q J R Meteorol Soc 94:292–309

    Article  Google Scholar 

  • Lim KSS, Hong SY (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138:1587–1612

    Article  Google Scholar 

  • Lock AP, Brown AR et al (2000) A new boundary layer mixing scheme. Part I: scheme description and single-column model tests. Mon Weather Rev 128:3187–3199

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol 17:187–202

    Article  Google Scholar 

  • McCaa JR, Bretherton CS (2004) A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: regional simulations of marine boundary layer clouds. Mon Weather Rev 132:883–896

    Article  Google Scholar 

  • McCoy IL, Wood R, Fletcher JK (2017) Identifying meteorological controls on open and closed mesoscale cellular convection associated with marine cold air outbreaks. J Geophys Res 122:11678–11702

    Article  Google Scholar 

  • Medeiros B, Stevens B (2011) Revealing differences in GCM representations of low clouds. Clim Dyn 36:385–399

    Article  Google Scholar 

  • Mellor GL, Yamada T (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806

    Article  Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 20:851–875

    Article  Google Scholar 

  • Miyamoto A, Nakamura H, Miyasaka T (2018) Influence of the subtropical high and storm track on low-cloud fraction and its seasonality over the south Indian Ocean. J Clim 31:4017–4039

    Article  Google Scholar 

  • Mlawer EJ et al (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682

    Article  Google Scholar 

  • Moeng CH et al (1996) Simulation of a stratocumulus-topped planetary boundary layer: intercomparison among different numerical codes. Bull Am Meteorol Soc 77:261–278

    Article  Google Scholar 

  • Morrison H, Curry JA, Khvorostyanov VI (2005) A new double-moment microphysics parameterization for application in cloud and climate models. Part I: description. J Atmos Sci 62:1665–1677

    Article  Google Scholar 

  • Nakanishi M, Niino H (2004) An improved Mellor-Yamada level-3 model with condensation physics: its design and verification. Bound Layer Meteorol 112:1–31

    Article  Google Scholar 

  • Nakanishi M, Niino H (2006) An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound Layer Meteorol 119:397–407

    Article  Google Scholar 

  • Nakanishi N, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn 87:895–912

    Article  Google Scholar 

  • Neiburger M, Johnson DS, Chien CW (1961) Studies of the structure of the atmosphere over the eastern Pacific Ocean in summer. Part I.: The inversion over the eastern north Pacific Ocean. University of California Press, Berkeley

    Google Scholar 

  • Nicholls S, Leighton J (1986) An observational study of the structure of stratiform cloud sheets: part I. Structure. Q J R Meteorol Soc 112(472):431–460

    Article  Google Scholar 

  • Noda AT, Satoh M (2014) Intermodel variances of subtropical stratocumulus environments simulated in CMIP5 models. Geophys Res Lett 41:7754–7761

    Article  Google Scholar 

  • Norris JR (1998) Low cloud type over the ocean from surface observations. Part II: geographical and seasonal variations. J Clim 11:383–403

    Article  Google Scholar 

  • Pai DS, Sridhar L, Ramesh Kumar MR (2016) Active and break events of Indian summer monsoon during 1901–2014. Clim Dyn 46:3921–3939

    Article  Google Scholar 

  • Plante JL et al (2016) Physics of stratocumulus top (POST): turbulence characteristics. Atmos Chem Phys 16:9711–9725

    Article  Google Scholar 

  • Pleim JE (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteorol Climatol 46:1383–1395

    Article  Google Scholar 

  • Pressel KG et al (2017) Numerics and sub-grid scale modelling in large-eddy simulations of stratocumulus clouds. J Adv Model Earth Syst 9:1342–1365

    Article  Google Scholar 

  • Rahn DA, Garreaud R (2010) Marine boundary layer over the subtropical southeast Pacific during VOCALS-Rex—part 1: mean structure and diurnal cycle. Atmos Chem Phys 10:4491–4506

    Article  Google Scholar 

  • Rai D, Pattanaik S (2019) Evaluation of WRF planetary boundary layer parameterization schemes for simulation of monsoon depressions over India. Meteorol Atmos Phys 131:1529–1548

    Article  Google Scholar 

  • Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. J Earth Syst Sci 119:229–247

    Article  Google Scholar 

  • Randall DA et al (2007) Climate models and their evaluation. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 589–662

    Google Scholar 

  • Randall DA, Coakley JA, Fairall CW, Kropfli RA, Lenschow DH (1984) Outlook for research on subtropical marine stratiform clouds. Bull Am Meteorol Soc 65:1290–1301

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2287

    Article  Google Scholar 

  • Roy K et al (2020) Assessment of climate models in relation to the low-level clouds over the Southern Indian Ocean. Q J R Meteorol Soc 146:3306–3325

    Article  Google Scholar 

  • Roy K et al (2021) Role of autoconversion process in assessing the low-level clouds over the southern Indian Ocean in Climate Forecast System (CFS) version 2. Theor Appl Climatol. https://doi.org/10.1007/s00704-021-03630-z

    Article  Google Scholar 

  • Sathiyamoorthy V et al (2013) Characteristics of low clouds over the Arabian Sea. J Geophys Res 118:1–15

    Article  Google Scholar 

  • Siebesma A et al (2004) Cloud representation in general-circulation models over the northern Pacific Ocean: a EUROCS intercomparison study. Q J R Meteorol Soc 130:3245–3267

    Article  Google Scholar 

  • Siebesma AP, Soares PMM, Teixeira J (2007) A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J Atmos Sci 64:1230–1248

    Article  Google Scholar 

  • Simmons A, Uppala S et al (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:26–35

    Google Scholar 

  • Solomon S et al (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Stensrud DJ (2007) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Stephens GL, Greenwald TJ (1991) The Earth’s radiation budget and its relation to atmospheric hydrology: 2. observations of cloud effects. J Geophys Res 96:15325–15340

    Article  Google Scholar 

  • Stevens B et al (2003) Dynamics and chemistry of marine stratocumulus—DYCOMS-II. Bull Am Meteorol Soc 84:579–593

    Article  Google Scholar 

  • Stevens B et al (2005) Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon Weather Rev 133:1443–1462

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Springer, New York

    Book  Google Scholar 

  • Sukoriansky S, Galperin B, Perov V (2005) Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound Layer Meteorol 117:231–257

    Article  Google Scholar 

  • Sukoriansky S, Galperin B, Perov V (2006) A quasi-normal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Process Geophys 13:9–22

    Article  Google Scholar 

  • Sun R, Moorthi S, Mechoso CR (2010) Simulation of low clouds in the southeast Pacific by the NCEP GFS: sensitivity to vertical mixing. Atmos Chem Phys 10:261–272

    Article  Google Scholar 

  • Teixeira J et al (2008) Parameterization of the atmospheric boundary layer: a view from just above the inversion. Bull Am Meteorol Soc 89:453–458

    Article  Google Scholar 

  • Teixeira J et al (2011) Tropical and subtropical cloud transitions in weather and climate prediction models: the GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI). J Clim 24:5223–5256

    Article  Google Scholar 

  • Thompson G, Field PR et al (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. II: implementation of a new snow parameterization. Mon Weather Rev 136:5095–5115

    Article  Google Scholar 

  • Troen I, Mahrt L (1986) Simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound Layer Meteorol 37:129–148

    Article  Google Scholar 

  • Tsushima Y et al (2016) Robustness, uncertainties, and emergent constraints in the radiative responses of stratocumulus cloud regimes to future warming. Clim Dyn 46:3025–3039

    Article  Google Scholar 

  • van Zanten MC et al (2005) Observations of drizzle in nocturnal marine stratocumulus. J Atmos Sci 62:88–106

    Article  Google Scholar 

  • Vellore R et al (2007) Challenges in mesoscale prediction of a nocturnal stratocumulus-topped marine boundary layer and implications for operational forecasting. Weather Forecast 22:1101–1122

    Article  Google Scholar 

  • Vial J, Dufresne JL, Bony B (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41:3339–3362

    Article  Google Scholar 

  • Vidya PJ et al (2020) Global warming hiatus contributed weakening of the Mascarene High in the Southern Indian Ocean. Sci Rep 10:1–9

    Google Scholar 

  • Wang Y et al (2004b) Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part I: control experiment. Mon Weather Rev 132:274–296

    Article  Google Scholar 

  • Wang Y, Xu H, Xie SP (2004a) Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part II: sensitivity experiments. Mon Weather Rev 132:2650–2668

    Article  Google Scholar 

  • Webb MJ et al (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27:17–38

    Article  Google Scholar 

  • Wilks DS (2019) Statistical methods in the atmospheric sciences. Elsevier, Amsterdam

    Google Scholar 

  • Wood R (2005) Drizzle in stratiform boundary layer clouds. I: vertical and horizontal structure. J Atmos Sci 62:3011–3033

    Article  Google Scholar 

  • Wood R (2012) Stratocumulus clouds. Mon Weather Rev 140:2373–2423

    Article  Google Scholar 

  • Wood R (2015) Stratus and stratocumulus. Encycl Atmos Sci 2:196–200

    Google Scholar 

  • Wood R, Bretherton CS (2006) On the relationship between stratiform low cloud cover and lower-tropospheric stability. J Clim 19:6425–6432

    Article  Google Scholar 

  • Wood R, Hartmann DL (2006) Spatial variability of liquid water path in marine low cloud: the importance of mesoscale cellular convection. J Clim 19:1748–1764

    Article  Google Scholar 

  • Xue F, Wang HJ, He JH (2004) Interannual variability of Mascarene high and Australian high and their influences on East Asian Summer Monsoon. J Meteorol Soc Jpn 82:1173–1186

    Article  Google Scholar 

  • Xulu NG, Chikoore H et al (2020) Climatology of the mascarene high and its influence on weather and climate over southern Africa. Climate. https://doi.org/10.3390/cli8070086

    Article  Google Scholar 

  • Yamaguchi T, Feingold G (2012) Technical note: large-eddy simulation of cloudy boundary layer with the advanced research WRF model. J Adv Model Earth Syst. https://doi.org/10.1029/2012MS000164

    Article  Google Scholar 

  • Young AH et al (2018) The international satellite cloud climatology project H-series climate data record product. Earth Syst Sci Data 10:583–593

    Article  Google Scholar 

  • Yue Q, Kahn BH, Fetzer EJ, Teixeira J (2011) Relationship between marine boundary layer clouds and lower tropospheric stability observed by AIRS, CloudSat, and CALIOP. J Geophys Res 116:D18212. https://doi.org/10.1029/2011JD016136

    Article  Google Scholar 

  • Zhai C, Jiang JH, Su H (2015) Long-term cloud change imprinted in seasonal cloud variation: more evidence of high climate sensitivity. Geophys Res Lett 42:8729–8737

    Article  Google Scholar 

  • Zhang MH et al (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophy Res. https://doi.org/10.1029/2004JD005021

    Article  Google Scholar 

  • Boucher O et al (2013) Clouds and aerosols. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, p 571–657

  • Bretherton CS (1997) Convection in stratocumulus-topped atmospheric boundary layers. In: The physics and parameterization of moist atmospheric convection. Springer, Dordrecht, p 127–142

  • Klein SA et al (2017) Low-cloud feedbacks from cloud-controlling factors: a review. In: Shallow clouds, water vapor, circulation, and climate sensitivity. Springer, New York, p 135–157

  • NOAA National Centers for Environmental Prediction (NCEP) (2011) NOAA/NCEP global forecast system (GFS) atmospheric model. https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs

  • Sikka DR, Gray WM (1981) Cross hemispheric actions and the onset of summer monsoon over India. In: International conference on scientific results of monsoon experiments, Bali, Indonesia, 26–30 October 1981

  • Skamarock WC et al (2019) A description of the advanced research WRF version 4. NCAR Technical Note, NCAR/TN–556+ STR

  • Stevens, B, Brenguier JL (2009) Cloud controlling factors: low clouds. In: Clouds in the perturbed climate system, p 173–196

  • Warren SG et al (1988) Global distribution of total cloud cover and cloud types over ocean. NCAR Tech. Note NCAR/TN-317+ STR, University Corporation for Atmospheric Research. https://doi.org/10.5065/D6QC01D1

  • Wentz FJ, Hilburn K, Smith DK (2012) RSS SSMIS ocean daily from DMSP F17 netcdf. NASA Global Hydrometeorology Resource Center DAAC, Huntsville, Alabama, USA. https://doi.org/10.5067/MEASURES/DMSP-F17/SSMIS/DATA301

Download references

Acknowledgements

The authors acknowledge Director, Indian Institute of Tropical Meteorology (IITM) for encouraging this work. Satellite imageries utilized in this study obtained from the India Meteorological Department, ERA-5, MERRA-2 reanalyzed datasets, SSM/I cloud products, and ISCCP H-series low-cloud datasets are acknowledged. This work is carried out as part of the first author’s doctoral dissertation. Authors also thank Dr. Priya Pattancheri and Mrs. Reji Mariya Joy for their assistance during the revision. We thank the anonymous reviewers for their constructive suggestions and comments

Funding

Indian Institute of Tropical Meteorology (IITM), Pune is an autonomous institute, fully funded by the Ministry of Earth Sciences (MoES), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh K. Vellore.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Responsible Editor: Clemens Simmer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokul, T., Vellore, R.K., Ayantika, D.C. et al. Sensitivity to PBL parameterizations on the marine layer cloud simulations in the southern Indian Ocean. Meteorol Atmos Phys 134, 56 (2022). https://doi.org/10.1007/s00703-022-00889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00703-022-00889-3

Navigation