Skip to main content
Log in

M-TraCE: a new tool for high-resolution computation and statistical elaboration of backward trajectories on the Italian domain

  • Original Paper
  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Abstract

Air backward trajectory calculations are commonly used in a variety of atmospheric analyses, in particular for source attribution evaluation. The accuracy of backward trajectory analysis is mainly determined by the quality and the spatial and temporal resolution of the underlying meteorological data set, especially in the cases of complex terrain. This work describes a new tool for the calculation and the statistical elaboration of backward trajectories. To take advantage of the high-resolution meteorological database of the Italian national air quality model MINNI, a dedicated set of procedures was implemented under the name of M-TraCE (MINNI module for Trajectories Calculation and statistical Elaboration) to calculate and process the backward trajectories of air masses reaching a site of interest. Some outcomes from the application of the developed methodology to the Italian Network of Special Purpose Monitoring Stations are shown to assess its strengths for the meteorological characterization of air quality monitoring stations. M-TraCE has demonstrated its capabilities to provide a detailed statistical assessment of transport patterns and region of influence of the site under investigation, which is fundamental for correctly interpreting pollutants measurements and ascertaining the official classification of the monitoring site based on meta-data information. Moreover, M-TraCE has shown its usefulness in supporting other assessments, i.e., spatial representativeness of a monitoring site, focussing specifically on the analysis of the effects due to meteorological variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Artuso F, Chamard P, Piacentino S, Di Sarra A, Meloni D, Monteleone F, Sferlazzo D, Thiery F (2007) Analysis of atmospheric methane measurements in Lampedusa during 1995–2005. Atmos Environ 41:3877–3888. doi:10.1016/j.atmosenv.2007.01.024

    Article  Google Scholar 

  • Bourcier L, Sellegri K, Masson O, Zangrando R, Barbante C, Gambaro A, Pichon JM, Boulon J, Laj P (2010) Experimental evidence of biomass burning as a source of atmospheric 137Cs, puy de Dôme (1465 m a.s.l.), France. Atmos Environ 44:2280–2286. doi:10.1016/j.atmosenv.2010.04.017

    Article  Google Scholar 

  • Brattich E, Hernández-Ceballos MA, Cinelli G, Tositti L (2015) Analysis of 210Pb peak values at Mt. Cimone (1998–2011). Atmos Environ 112:136–147. doi:10.1016/j.atmosenv.2015.04.020

    Article  Google Scholar 

  • Byčenkienė S, Dudoitis V, Ulevicius V (2014) The use of trajectory cluster analysis to evaluate the long-range transport of black carbon aerosol in the south-eastern Baltic region. Adv Meteorol. doi:10.1155/2014/137694

    Google Scholar 

  • Cabello M, Orza JAG, Galiano V, Ruiz G (2008) Influence of meteorological input data on backtrajectory cluster analysis—a seven-year study for southeastern Spain. Adv Sci Res 2:65–70. doi:10.5194/asr-2-65-2008

    Article  Google Scholar 

  • Calastrini F, Guarnieri F, Becagli S, Busillo C, Chiari M, Dayan U, Lucarelli F, Nava S, Pasqui M, Traversi R, Udisti R, Zipoli G (2012) Desert dust outbreaks over Mediterranean basin: a modeling, observational, and synoptic analysis approach. Adv Meteorol. doi:10.1155/2012/246874

    Google Scholar 

  • Chan CY, Wong KH, Li YS, Chan LY, Zheng XD (2006) The effects of Southeast Asia fire activities on tropospheric ozone, trace gases and aerosols at a remote site over the Tibetan Plateau of Southwest China. Tellus B 58:310–318. doi:10.1111/j.1600-0889.2006.00187.x

    Article  Google Scholar 

  • Chen LWA, Watson JG, Chow JC, DuBois DW, Herschberge L (2011) PM2.5 source apportionment: reconciling receptor models for U.S. nonurban and urban long-term networks. J Air Waste Manage Assoc 61:1204–1217. doi:10.1080/10473289.2011.619082

    Article  Google Scholar 

  • Cheng I, Xu X, Zhang L (2015) Overview of receptor-based source apportionment studies for speciated atmospheric mercury. Atmos Chem Phys 15:7877–7895. doi:10.5194/acp-15-7877-2015

    Article  Google Scholar 

  • Ciardini V, Di Iorio T, Di Liberto L, Tirelli C, Casasanta G, Di Sarra A, Fiocco G, Fuà D, Cacciani M (2012) Seasonal variability of tropospheric aerosols in Rome. Atmos Res 118:205–214. doi:10.1016/j.atmosres.2012.06.026

    Article  Google Scholar 

  • Cohen DD, Crawford J, Stelcer E, Atanacio A (2012) A new approach to the combination of IBA techniques and wind back trajectory data to determine source contributions to long range transport of fine particle air pollution. Nucl Instr Meth Phys Res Sect B Beam Interact Mater Atoms 273:186–188. doi:10.1016/j.nimb.2011.07.071

    Article  Google Scholar 

  • Cotton WR, Pielke RA, Walko RL, Liston GE, Tremback CJ, Jiang H, McAnelly RL, Harrington JY, Nicholls ME, Carrio GG, McFadden JP (2003) RAMS 2001: current status and future directions. Meteorol Atmos Phys 82:5–29. doi:10.1007/s00703-001-0584-9

    Article  Google Scholar 

  • Delcloo AW, De Backer H (2008) Five day 3D back trajectory clusters and trends analysis of the Uccle ozone sounding time series in the lower troposphere (1969–2001). Atmos Environ 42:4419–4432. doi:10.1016/j.atmosenv.2008.01.072

    Article  Google Scholar 

  • Di Gilio A, De Gennaro G, Dambruoso P, Ventrella G (2015) An integrated approach using high time-resolved tools to study the origin of aerosols. Sci Total Environ 530–531:28–37. doi:10.1016/j.scitotenv.2015.04.073

    Article  Google Scholar 

  • D’Isidoro M, Mircea M, Vitali L, Cionni I, Briganti G, Cappelletti A, Finardi S, Pace G, Ciancarella L, Cremona G, Piersanti A, Righini G, Zanini G (2013) Study of the impact of low vs. high resolution meteorology on air quality simulations using the MINNI model over Italy. NATO SPS C Environ Secur 137:587–592. doi:10.1007/978-94-007-5577-2_99

    Google Scholar 

  • Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308

    Google Scholar 

  • Draxler RR, Rolph GD (2015) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring

  • Escudero M, Stein AF, Draxler RR, Querol X, Alastuey A, Castillo S, Avila A (2011) Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. Atmos Res 99:3–4. doi:10.1016/j.atmosres.2010.12.002

    Article  Google Scholar 

  • European Council (1997) Council Decision 97/101/EC of 27 January 1997 establishing a reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the Member States (EoI Decision)

  • Fernández-Rodríguez S, Sadyś M, Smith M, Tormo-Molina R, Skjøth CA, Maya-Manzano JM, Silva-Palacios I, Gonzalo-Garijo Á (2015) Potential sources of airborne Alternaria spp. spores in South-west Spain. Sci Total Environ 533:165–176. doi:10.1016/j.scitotenv.2015.06.031

    Article  Google Scholar 

  • Fleming ZL, Monks PS, Manning AJ (2012) Review: untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos Res 104–105:1–39. doi:10.1016/j.atmosres.2011.09.009

    Article  Google Scholar 

  • Folini D, Kaufmann P, Ubl S, Henne S (2009) Region of infuence of 13 remote European measurement sites based on modeled CO mixing ratios. J Geophys Res 114:D08307. doi:10.1029/2008JD011125

    Article  Google Scholar 

  • Gebhart KA, Schichtel BA, Barna MG (2005) Directional biases in back trajectories caused by model and input data. J Air Waste Manage Assoc 55:1649–1662

    Article  Google Scholar 

  • Gebhart KA, Malm WC, Rodriguez MA, Barna MG, Schichtel BA, Benedict KB, Collett JL, Carrico CM (2014) Meteorological and back trajectory modeling for the Rocky Mountain atmospheric nitrogen and sulfur study II. Adv Meteorol. doi:10.1155/2014/414015

    Google Scholar 

  • Giua R, Morabito A, Tanzarella A, Spagnolo S, Pastore T, Bevere M, Valentini E, La Ghezza V, De Gennaro G, Brusasca G, Tinarelli G, Assennato G (2014) Application of a Lagrangian particle model to the source apportionment for primary macropollutants in Taranto area (South Italy). Int J Environ Pollut 55(1–4):31–40. doi:10.1504/IJEP.2014.065902

    Article  Google Scholar 

  • Harris J, Draxler R, Oltman S (2005) Trajectory model sensitivity to differences in input data and vertical transport method. J Geophys Res 110:14109. doi:10.1029/2004JD005750

    Google Scholar 

  • Hegarty J, Draxler RR, Stein AF, Brioude J, Mountain M, Eluszkiewicz J, Nehrkorn T, Ngan F, Andrews A (2013) Evaluation of lagrangian particle dispersion models with measurements from controlled tracer releases. J Appl Meteor Climatol 52:2623–2637. doi:10.1175/JAMC-D-13-0125.1

    Article  Google Scholar 

  • Henne S, Brunner D, Folini D, Solberg S, Klausen J, Buchmann B (2010) Assessment of parameters describing representativeness of air quality in situ measurement sites. Atmos Chem Phys 10:3561–3581. doi:10.5194/acp-10-3561-2010

    Article  Google Scholar 

  • Hernández-Ceballos MA, Skjøth CA, García-Mozo H, Bolívar JP, Galán C (2014) Improvement in the accuracy of back trajectories using WRF to identify pollen sources in southern Iberian Peninsula. Int J Biometeorol 58:2031–2043. doi:10.1007/s00484-014-0804-x

    Article  Google Scholar 

  • Heymann Y, Steenmans Ch, Croissille G, Bossard M (1994) Corine land cover. Technical Guide. EUR12585 Luxembourg, Office for Official Publications of the European Communities

  • Hussein T, Al-Ruz RA, Petäjä T, Junnine H, Arafah DE, Hämeri K, Kulmala M (2011) Local air pollution versus short-range transported dust episodes: a comparative study for submicron particle number concentration. Aerosol Air Qual Res 11(2):109–119. doi:10.4209/aaqr.2010.08.0066

    Google Scholar 

  • Kolker A, Olson ML, Krabbenhoft DP, Tate MT, Engle MA (2010) Patterns of mercury dispersion from local and regional emission sources, rural Central Wisconsin, USA. Atmos Chem Phys 10:4467–4476. doi:10.5194/acp-10-4467-2010

    Article  Google Scholar 

  • Kuang S, Newchurch MJ, Burris J, Wang L, Knupp K, Huang G (2012) Stratosphere-to troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site. J Geophys Res 117:D18305. doi:10.1029/2012JD017695

    Article  Google Scholar 

  • Ma WL, Qi H, Baidron S, Liu LY, Yang M, Li YF (2013) Implications for long-range atmospheric transport of polycyclic aromatic hydrocarbons in Lhasa, China. Environ Sci Pollut R 20(8):5525–5533. doi:10.1007/s11356-013-1577-1

    Article  Google Scholar 

  • Marenco F, Bonasoni P, Calzolari F, Ceriani M, Chiari M, Cristofanelli P, D’Alessandro A, Fermo P, Lucarelli F, Mazzei F, Nava S, Piazzalunga A, Prati P, Valli G, Vecchi R (2006) Characterization of atmospheric aerosols at Monte Cimone, Italy, during summer 2004: source apportionment and transport mechanisms. J Geophys Res 111:D24202. doi:10.1029/2006JD007145

    Article  Google Scholar 

  • Masiol M, Rampazzo G, Ceccato D, Squizzato S, Pavoni B (2010) Characterization of PM10 sources in a coastal area near Venice (Italy): an application of factor-cluster analysis. Chemosphere 80(7):771–778. doi:10.1016/j.chemosphere.2010.05.008

    Article  Google Scholar 

  • Meloni D, Di Sarra A, Biavati G, DeLuisi JJ, Monteleone F, Pace G, Piacentino S, Sferlazzo DM (2007) Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmos Environ 41:3041–3056. doi:10.1016/j.atmosenv.2006.12.001

    Article  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360. doi:10.1175/BAMS-87-3-343

    Article  Google Scholar 

  • Mircea M, Ciancarella L, Briganti G, Calori G, Cappelletti G, Cionni I, Costa M, Cremona G, D’Isidoro M, Finardi S, Pace G, Piersanti A, Righini G, Silibello C, Vitali L, Zanini G (2014) Assessment of the AMS-MINNI system capabilities to simulate air quality over Italy for the calendar year 2005. Atmos Environ 84:178–188. doi:10.1016/j.atmosenv.2013.11.006

    Article  Google Scholar 

  • Mircea M, Grigoras G, D’Isidoro M, Righini G, Adani M, Briganti G, Ciancarella L, Cappelletti A, Calori G, Cionni I, Cremona G, Finardi S, Larsen BR, Pace G, Perrino C, Piersanti A, Silibello C, Vitali L, Zanini G (2016) Impact of grid resolution on aerosol predictions: a case study over Italy. Aerosol Air Qual Res 16(5):1253–1267. doi:10.4209/aaqr.2015.02.0058

    Article  Google Scholar 

  • Monforti F, Huld T, Bódis K, Vitali L, D’Isidoro M, Lacal-Arántegui R (2014) Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach. Renew Energ 63:576–586. doi:10.1016/j.renene.2013.10.028

    Article  Google Scholar 

  • Morabito A, Giua R, Tanzarella A, Spagnolo S, Pastore T, Bevere M, Valentini E, La Ghezza V, Assennato G, Tinarelli G, Brusasca G, De Gennaro G (2013) Application of a Lagrangian particle model to the source apportionment for primary macropollutants in Taranto area (South Italy). In: Proceedings of the 15th international conference on harmonisation within atmospheric dispersion modelling for regulatory purposes, pp 196–200

  • NCAR Command Language (Version 6.3.0) [Software] (2015) UCAR/NCAR/CISL/TDD, Boulder. doi:10.5065/D6WD3XH5

  • Pace G, Meloni D, di Sarra A (2005) Forest fire aerosol over the Mediterranean basin during summer 2003. J Geophys Res 110:D21202. doi:10.1029/2005JD005986

    Article  Google Scholar 

  • Pace G, di Sarra A, Meloni D, Piacentino S, Chamard P (2006) Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos Chem Phys 6:697–713. doi:10.5194/acp-6-697-2006

    Article  Google Scholar 

  • Pace G, Junkermann W, Vitali L, di Sarra A, Meloni D, Cacciani M, Cremona G, Iannarelli A, Zanini G (2015) On the complexity of the boundary layer structure and aerosol vertical distribution in the coastal Mediterranean regions: a case study. Tellus B 67:27721. doi:10.3402/tellusb.v67.27721

    Article  Google Scholar 

  • Pérez IA, Artuso F, Mahmud M, Kulshrestha U, Sánchez ML, García MÁ (2015) Applications of air mass trajectories. Adv Meteorol. doi:10.1155/2015/284213

    Google Scholar 

  • Perrone MR, Becagli S, Garcia Orza JA, Vecchi R, Dinoi A, Udisti R, Cabello M (2013) The impact of long-range-transport on PM1 and PM2.5 at a Central Mediterranean site. Atmos Environ 71:176–186. doi:10.1016/j.atmosenv.2013.02.006

    Article  Google Scholar 

  • Petterssen S (1954) Weather analysis and forecasting. McGraw-Hill Book Company, New York, pp 221–223

    Google Scholar 

  • Piersanti A, Vitali L, Righini G, Cremona G, Ciancarella L (2015) Spatial representativeness of air quality monitoring stations: a grid model based approach. Atmos Pollut Res 6:953–960. doi:10.1016/j.apr.2015.04.005

    Article  Google Scholar 

  • Ponti G, Palombi F, Abate D, Ambrosino F, Aprea G, Bastianelli T, Beone F, Bertini R, Bracco G, Caporicci M, Calosso B, Chinnici M, Colavincenzo A, Cucurullo A, D’Angelo P, De Rosa M, De Michele P, Funel A, Furini G, Giammattei D, Giusepponi S, Guadagni R, Guarnieri G, Italiano A, Magagnino S, Mariano A, Mencuccini G, Mercuri C, Migliori S, Ornelli P, Pecoraro S, Perozziello A, Pierattini S, Podda S, Poggi F, Quintiliani A, Rocchi A, Scio C, Simoni F, Vita A (2014) The role of medium size facilities in the HPC ecosystem: the case of the new CRESCO4 cluster integrated in the ENEAGRID infrastructure. In: Proceedings of the 2014 international conference on high performance computing and simulation, HPCS 2014, art. no. 6903807, pp 1030–1033

  • Remoundaki E, Papayannis A, Kassomenos P, Mantas E, Kokkalis P, Tsezo M (2013) Influence of saharan dust transport events on PM2.5 concentrations and composition over Athens. Water Air Soil Pollut 224:1373. doi:10.1007/s11270-012-1373-4

    Article  Google Scholar 

  • Righini G, Cappelletti A, Ciucci A, Cremona G, Piersanti A, Vitali L, Ciancarella L (2014) GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data. Atmos Environ 97:121–129. doi:10.1016/j.atmosenv.2014.08.015

    Article  Google Scholar 

  • Rolph GD (2015) Real-time Environmental Applications and Display sYstem (READY) Website (http://ready.arl.noaa.gov). NOAA Air Resources Laboratory, Silver Spring

  • Rousseau DD, Duzer D, Etienne JL, Cambon G, Jolly D, Ferrier J, Schevin P (2004) Pollen record of rapidly changing air trajectories to the North Pole. J Geophys Res 109:D06116. doi:10.1029/2003JD003985

    Article  Google Scholar 

  • Salvador P, Artíñano B, Pio C, Afonso J, Legrand M, Puxbaum H, Hammer S (2010) Evaluation of aerosol sources at European high altitude background sites with trajectory statistical methods. Atmos Environ 44:2316–2329. doi:10.1016/j.atmosenv.2010.03.042

    Article  Google Scholar 

  • San José R, Stohl A, Karatzas K, Bohler T, James P, Pérez JL (2005) A modelling study of an extraordinary night time ozone episode over Madrid domain. Environ Modell Softw 20:587–593. doi:10.1016/j.envsoft.2004.03.009

    Article  Google Scholar 

  • Schäfer K, Birmili W, Cyrys J, Emeis S, Forkel R, Gilge S, Münkelf C, Pitz M, Ries L, Suppan P (2010) Temporal and spatial structure of a volcanic ash cloud—ground-based remote sensing and numerical modeling. In: Proceedings of SPIE 7832, Lidar Technologies, techniques, and measurements for atmospheric remote sensing VI, 78320R (October 26, 2010). doi:10.1117/12.870763

  • Scheifinger H, Kaiser A (2007) Validation of trajectory statistical methods. Atmos Environ 41:8846–8856. doi:10.1016/j.atmosenv.2007.08.034

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2005) A description of the advanced research WRF version 2. NCAR Tech Notes-468 + STR

  • Skjøth CA, Sommer J, Frederiksen L, Gosewinkel Karlson U (2012) Crop harvest in Denmark and Central Europe contributes to the local load of airborne Alternaria spore concentrations in Copenhagen. Atmos Chem Phys 12(22):11107–11123. doi:10.5194/acp-12-11107-2012

    Article  Google Scholar 

  • Spangl W, Schneider J, Moosmann L, Nagl C (2007) Representativeness and classification of air quality monitoring stations—final report. Umweltbundesamt report, Umweltbundesamt, Vienna

    Google Scholar 

  • Squizzato S, Masiol M (2015) Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: a case study in Venice (Italy). Atmos Environ 119:69–81. doi:10.1016/j.atmosenv.2015.08.026

    Article  Google Scholar 

  • Srivastava S, Naja M, Thouret V (2015) Influences of regional pollution and long range transport over Hyderabad using ozone data from MOZAIC. Atmos Environ 117:135–146. doi:10.1016/j.atmosenv.2015.06.037

    Article  Google Scholar 

  • Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077. doi:10.1175/BAMS-D-14-00110.1

    Article  Google Scholar 

  • Stohl A (1998) Computation, accuracy and applications of trajectories—a review and bibliography. Atmos Environ 32:947–966. doi:10.1016/S1352-2310(97)00457-3

    Article  Google Scholar 

  • Stohl A, Wotawa G, Seibert P, Kromp-Kolb H (1995) Interpolation errors in wind fields as a function of spatial and temporal resolution and their impact on different types of kinematic trajectories. J Appl Meteorol 34:2149–2165. doi:10.1175/1520-0450(1995)034<2149:IEIWFA>2.0.CO;2

    Article  Google Scholar 

  • Stohl A, Haimberger L, Scheele M, Wernli H (2001) An intercomparison of results from three trajectory models. Meteorol App 8:127–135. doi:10.1017/S1350482701002018

    Article  Google Scholar 

  • Tarasick DW, Jin JJ, Fioletov VE, Liu G, Thompson AM, Oltmans SJ, Liu J, Sioris CE, Liu X, Cooper OR, Dann T, Thouret V (2010) High-resolution tropospheric ozone fields for INTEX and ARCTAS from IONS ozonesondes. J Geophys Res 115:D20301. doi:10.1029/2009JD012918

    Article  Google Scholar 

  • Valenzuela A, Olmo FJ, Lyamani H, Antón M, Quirantes A, Alados-Arboledas L (2012) Classification of aerosol radiative properties during African desert dust intrusions over southeastern Spain by sector origins and cluster analysis. J Geophys Res 117:D06214. doi:10.1029/2011JD016885

    Article  Google Scholar 

  • Van Pinxteren D, Brüggemann E, Gnauk T, Müller K, Thiel C, Herrmann H (2010) A GIS based approach to back trajectory analysis for the source apportionment of aerosol constituents and its first application. J Atmos Chem 67(1):1–28. doi:10.1007/s10874-011-9199-9

    Article  Google Scholar 

  • Verma S, Venkataraman C, Boucher O, Ramachandran S (2007) Source evaluation of aerosols measured during the Indian Ocean Experiment using combined chemical transport and back trajectory modeling. J Geophys Res 112:D11210. doi:10.1029/2006JD007698

    Article  Google Scholar 

  • Vitali L, Finardi S, Pace G, Piersanti A, Zanini G (2010) Validation of simulated atmospheric fields for air quality purposes in Italy. In: Proceedings of the 13th international conference on harmonisation within atmospheric dispersion modelling for regulatory purposes, pp 609–613

  • Wang L, Liu Z, Sun Y, Ji D, Wang Y (2015) Long-range transport and regional sources of PM2.5 in Beijing based on long-term observations from 2005 to 2010. Atmos Res 157:37–48. doi:10.1016/j.atmosres.2014.12.003

    Article  Google Scholar 

  • Zeng J, Matsunaga T, Mukai H (2008) METEX—a flexible tool for air trajectory calculation. Environ Model Softw 25(4):607–608. doi:10.1016/j.envsoft.2008.10.015

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the Cooperation Agreement for the starting up the Italian National Network of Special Purpose Monitoring Station (CUP: F57G10000050001), funded by the Italian Ministry of the Environment, Land and Sea, which the authors wish to thank also for providing AMS-MINNI project results. The computing resources and the related technical support used for this work have been provided by CRESCO/ENEAGRID High Performance Computing infrastructure and its staff. CRESCO/ENEAGRID High Performance Computing infrastructure is funded by ENEA, the Italian National Agency for New Technologies, Energy and Sustainable Economic Development, and by Italian and European research programmes, see http://www.cresco.enea.it/english for information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Vitali.

Additional information

Responsible Editor: M. T. Prtenjak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitali, L., Righini, G., Piersanti, A. et al. M-TraCE: a new tool for high-resolution computation and statistical elaboration of backward trajectories on the Italian domain. Meteorol Atmos Phys 129, 629–643 (2017). https://doi.org/10.1007/s00703-016-0491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00703-016-0491-8

Keywords

Navigation