Skip to main content
Log in

Excitatory and inhibitory imbalances in the trisynaptic pathway in the hippocampus in schizophrenia: a postmortem ultrastructural study

  • Psychiatry and Preclinical Psychiatric Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Background

A preponderance of evidence suggests that the hippocampus is a key region of dysfunction in schizophrenia. Neuroimaging and other studies indicate a relationship between hippocampal dysfunction and the degree of psychosis. Clinical data indicate hyperactivity in the hippocampus that precedes the onset of psychosis, and is correlated with symptom severity. In this study, we sought to identify circuitry at the electron microscopic level that could contribute to region-specific imbalances in excitation and inhibition in the hippocampus in schizophrenia. We used postmortem tissue from the anterior hippocampus from patients with schizophrenia and matched controls. Using stereological techniques, we counted and measured synapses, postsynaptic densities (PSDs), and evaluated size, number and optical density of mitochondria and parvalbumin-containing interneurons in key nodes of the trisynaptic pathway. Compared to controls, the schizophrenia group had decreased numbers of inhibitory synapses in CA3 and increased numbers of excitatory synapses in CA1; together, this indicates deficits in inhibition and an increase in excitation. The thickness of the PSD was larger in excitatory synapses in CA1, suggesting greater synaptic strength. In the schizophrenia group, there were fewer mitochondria in the dentate gyrus and a decrease in the optical density, a measure of functional integrity, in CA1. The number and optical density of parvalbumin interneurons were lower in CA3. The results suggest region-specific increases in excitatory circuitry, decreases in inhibitory neurotransmission and fewer or damaged mitochondria. These results are consistent with the hyperactivity observed in the hippocampus in schizophrenia in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Supplementary figures and tables are available online. Research data will be fully available upon request.

References

  • Abi-Dargham A, Gil R, Krystal J, Baldwin RM, Seibyl JP, Bowers M, van Dyck CH, Charney DS, Innis RB, Laruelle M (1998) Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 155(6):761–767

    CAS  PubMed  Google Scholar 

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97(14):8104–8109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aleman A, Hijman R, de Haan EH, Kahn RS (1999) Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry 156(9):1358–1366

    CAS  PubMed  Google Scholar 

  • Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, Young TA, Bullard J, Yokoe H, Webster MJ, Knable MB, Brockman JA (2005) Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 58(2):85–96

    CAS  PubMed  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31(3):571–591

    CAS  PubMed  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56

    CAS  PubMed  Google Scholar 

  • Beckstead RM (1978) Afferent connections of the entorhinal area in the rat as demonstrated by retrograde cell-labeling with horseradish peroxidase. Brain Res 152(2):249–264

    CAS  PubMed  Google Scholar 

  • Benes FM (1991) Morphometric analyses of the hippocampal formation in schizophrenic brain. Schizophr Bull 17:597–608

    CAS  PubMed  Google Scholar 

  • Benes FM (1999) Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry 46(5):589–599

    CAS  PubMed  Google Scholar 

  • Benes FM (2015) Building models for postmortem abnormalities in hippocampus of schizophrenics. Schizophr Res 167(1–3):73–83

    PubMed  Google Scholar 

  • Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiat 44(2):88–97

    CAS  PubMed  Google Scholar 

  • Blackstad TW, Brink K, Hem J, Jeune B (1970) Distribution of hippocampal mossy fibers in the rat. An experimental study with silver impregnation methods. J Comp Neurol 138(4):433–449

    CAS  PubMed  Google Scholar 

  • Bobilev AM, Perez JM, Tamminga CA (2020) Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 217:71–85

    PubMed  Google Scholar 

  • Booker SA, Vida I (2018) Morphological diversity and connectivity of hippocampal interneurons. Cell Tissue Res 373(3):619–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne JN, Harris KM (2011) Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21(4):354–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchsbaum MS, Haier RJ, Potkin SG, Nuechterlein K, Bracha HS, Katz M, Lohr J, Wu J, Lottenberg S, Jerabek PA et al (1992) Frontostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry 49(12):935–942

    CAS  PubMed  Google Scholar 

  • Canuso CM, Pandina G (2007) Gender and schizophrenia. Psychopharmacol Bull 40(4):178–190

    PubMed  Google Scholar 

  • Carlsson A (1974) Antipsychotic drugs and catecholamine synapses. J Psychiatr Res 11:57–64

    CAS  PubMed  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (copenh) 20:140–144

    CAS  PubMed  Google Scholar 

  • Chong HY, Teoh SL, Wu DB, Kotirum S, Chiou CF, Chaiyakunapruk N (2016) Global economic burden of schizophrenia: a systematic review. Neuropsychiatr Dis Treat 12:357–373

    PubMed  PubMed Central  Google Scholar 

  • Claiborne BJ, Amaral DG, Cowan WM (1986) A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 246(4):435–458

    CAS  PubMed  Google Scholar 

  • Coyle JT (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26(4–6):365–384

    CAS  PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptors and average clinical doses. Science 194(4264):546

    CAS  PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1996) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. J Neuropsychiatry Clin Neurosci 8(2):223–226

    CAS  PubMed  Google Scholar 

  • de la Fuente-Sandoval C, León-Ortiz P, Favila R, Stephano S, Mamo D, Ramírez-Bermúdez J, Graff-Guerrero A (2011) Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis. Neuropsychopharmacology 36(9):1781–1791

    PubMed  PubMed Central  Google Scholar 

  • de la Fuente-Sandoval C, León-Ortiz P, Azcárraga M, Stephano S, Favila R, Díaz-Galvis L, Alvarado-Alanis P, Ramírez-Bermúdez J, Graff-Guerrero A (2013) Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: a longitudinal proton magnetic resonance spectroscopy study. JAMA Psychiat 70(10):1057–1066

    Google Scholar 

  • Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, Singer W (1999) Activation of Heschl’s gyrus during auditory hallucinations. Neuron 22(3):615–621

    CAS  PubMed  Google Scholar 

  • Duvernoy HM (1988) The Human Hippocampus. J.F. Bergmann-Verlag, Munich

    Google Scholar 

  • Dwork AJ (1997) Postmortem studies of the hippocampal formation in schizophrenia. Schizophr Bull 23(3):385–402

    CAS  PubMed  Google Scholar 

  • Eastwood SL, Burnet PW, Harrison PJ (1995) Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 66(2):309–319

    CAS  PubMed  Google Scholar 

  • Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44(1):109–120

    CAS  PubMed  Google Scholar 

  • Ellison-Wright I, Bullmore E (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 108(1–3):3–10

    PubMed  Google Scholar 

  • Exner C, Nehrkorn B, Martin V, Huber M, Shiratori K, Rief W (2008) Sex-dependent hippocampal volume reductions in schizophrenia relate to episodic memory deficits. J Neuropsychiatry Clin Neurosci 20(2):227–230

    PubMed  Google Scholar 

  • Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65(1):7–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finch DM, Babb TL (1981) Demonstration of caudally directed hippocampal efferents in the rat by intracellular injection of horseradish peroxidase. Brain Res 214(2):405–410

    CAS  PubMed  Google Scholar 

  • Finch DM, Nowlin NL, Babb TL (1983) Demonstration of axonal projections of neurons in the rat hippocampus and subiculum by intracellular injection of HRP. Brain Res 271(2):201–216

    CAS  PubMed  Google Scholar 

  • Fletcher P (1998) The missing link: a failure of fronto-hippocampal integration in schizophrenia. Nat Neurosci 1(4):266–267

    CAS  PubMed  Google Scholar 

  • Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    CAS  PubMed  Google Scholar 

  • Friston KJ, Liddle PF, Frith CD, Hirsch SR, Frackowiak RS (1992) The left medial temporal region and schizophrenia. A PET Study Brain 115(2):367–382

    PubMed  Google Scholar 

  • Gaarskjaer FB (1978) Organization of the mossy fiber system of the rat studied in extended hippocampi. I. Terminal area related to number of granule and pyramidal cells. J Comp Neurol 178(1):49–72

    CAS  PubMed  Google Scholar 

  • Gallinat J, Lang UE, Jacobsen LK, Bajbouj M, Kalu P, von Haebler D, Seifert F, Schubert F (2007) Abnormal hippocampal neurochemistry in smokers: evidence from proton magnetic resonance spectroscopy at 3 T. J Clinical Psychopharmacology 27(1):80–84

    CAS  Google Scholar 

  • Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157(7):1141–1149

    CAS  PubMed  Google Scholar 

  • Geinisman Y, Gunderson HJG, Van Der Zee E, West MJ (1996) Unbiased stereological estimation of the total number of synapses in a brain region. J Neurocytol 12:805–819

    Google Scholar 

  • Ghose S, Chin R, Gallegos A, Roberts R, Coyle J, Tamminga C (2009) Localization of NAAG-related gene expression deficits to the anterior hippocampus in schizophrenia. Schizophr Res 111(1–3):131–137

    PubMed  PubMed Central  Google Scholar 

  • Glausier JR, Lewis DA (2018) Mapping pathologic circuitry in schizophrenia. Handb Clin Neurol 150:389–417

    PubMed  Google Scholar 

  • Gray EG (1969) Electron microscopy of excitatory and inhibitory synapses: a brief review. Prog Brain Res 31:141–155

    CAS  PubMed  Google Scholar 

  • Greene R (2001) Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus 11(5):569–577

    CAS  PubMed  Google Scholar 

  • Guo JY, Ragland JD, Carter CS (2019) Memory and cognition in schizophrenia. Mol Psychiatry 24(5):633–642

    CAS  PubMed  Google Scholar 

  • Gur RE, Mozley PD, Resnick SM, Mozley LH, Shtasel DL, Gallacher F, Arnold SE, Karp JS, Alavi A, Reivich M, Gur RC (1995) Resting cerebral glucose metabolism in first-episode and previously treated patients with schizophrenia relates to clinical features. Arch Gen Psychiatry 52(8):657–667

    CAS  PubMed  Google Scholar 

  • Hackenbrock CR (1968) Ultrastructural bases for metabolically linked mechanical activity in mitochondria: II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biology 37(2):345–369

    CAS  Google Scholar 

  • Harris KM, Spacek J, Bell ME, Parker PH, Lindsey LF, Baden AD, Vogelstein JT, Burns R (2015) A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development. Sci Data 2:150046

    PubMed  PubMed Central  Google Scholar 

  • Haukvik UK, Tamnes CK, Söderman E, Agartz I (2018) Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: a systematic review and meta-analysis. J Psychiatr Res 104:217–226

    PubMed  Google Scholar 

  • Heckers S, Konradi C (2010) Hippocampal pathology in schizophrenia. Curr Top Behav Neurosci 4:529–553

    PubMed  Google Scholar 

  • Heckers S, Konradi C (2015) GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res 167(1–3):4–11

    PubMed  Google Scholar 

  • Heckers S, Heinsen H, Geiger B, Beckmann H (1991) Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 48(11):1002–1008

    CAS  PubMed  Google Scholar 

  • Holt DJ, Weiss AP, Rauch SL, Wright CI, Zalesak M, Goff DC, Ditman T, Welsh RC, Heckers S (2005) Sustained activation of the hippocampus in response to fearful faces in schizophrenia. Biol Psych 57:1011–1019

    Google Scholar 

  • Holt DJ, Kunkel L, Weiss AP, Goff DC, Wright CI, Shin LM, Rauch SL, Hootnick J, Heckers S (2006) Increased medial temporal lobe activation during the passive viewing of emotional and neutral facial expressions in schizophrenia. Schizophr Res 82(2–3):153–162

    PubMed  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull 35(3):549–562

    PubMed  PubMed Central  Google Scholar 

  • Hutcheson NL, Reid MA, White DM, Kraguljac NV, Avsar KB, Bolding MS, Knowlton RC, den Hollander JA, Lahti AC (2012) Multimodal analysis of the hippocampus in schizophrenia using proton magnetic resonance spectroscopy and functional magnetic resonance imaging. Schizophr Res 140(1–3):136–142

    PubMed  PubMed Central  Google Scholar 

  • Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psych 9(11):984–997

    CAS  Google Scholar 

  • Kawasaki Y, Suzuki M, Maeda Y, Urata K, Yamaguchi N, Matsuda H, Hisada K, Suzuki M, Takashima T (1992) Regional cerebral blood flow in patients with schizophrenia. A preliminary report. Eur Arch Psych Clin Neurosci 241(4):195–200

    CAS  Google Scholar 

  • Kawasaki Y, Maeda Y, Sakai N, Higashima M, Yamaguchi N, Koshino Y, Hisada K, Suzuki M, Matsuda H (1996) Regional cerebral blood flow in patients with schizophrenia: relevance to symptom structures. Psychiatry Res 67(1):49–58

    CAS  PubMed  Google Scholar 

  • Knierim JJ, Neunuebel JP (2016) Tracking the flow of hippocampal computation: pattern separation, pattern completion, and attractor dynamics. Neurobiol Learn Mem 129:38–49

    CAS  PubMed  Google Scholar 

  • Köhler C (1985) Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236(4):504–522

    PubMed  Google Scholar 

  • Köhler C, Shipley MT, Srebro B, Harkmark W (1978) Some retrohippocampal afferents to the entorhinal cortex. Cells of origin as studied by the HRP method in the rat and mouse. Neurosci Lett 10(1–2):115–120

    PubMed  Google Scholar 

  • Kolomeets NS, Uranova NA (2010) Ultrastructural abnormalities of astrocytes in the hippocampus in schizophrenia and duration of illness: a postortem (sic) morphometric study. World J Biol Psych 11(2):282–292

    Google Scholar 

  • Kolomeets NS, Orlovskaya DD, Rachmanova VI, Uranova NA (2005) Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: a postmortem morphometric study. Synapse 57(1):47–55

    CAS  PubMed  Google Scholar 

  • Kolomeets NS, Orlovskaya DD, Uranova NA (2007) Decreased numerical density of CA3 hippocampal mossy fiber synapses in schizophrenia. Synapse 61(8):615–621

    CAS  PubMed  Google Scholar 

  • Konkel A, Warren DE, Duff MC, Tranel DN, Cohen NJ (2008) Hippocampal amnesia impairs all manner of relational memory. Front Hum Neurosci 2:15

    PubMed  PubMed Central  Google Scholar 

  • Konradi C, Yang CK, Zimmerman EI, Lohmann KM, Gresch P, Pantazopoulos H, Berretta S, Heckers S (2011) Hippocampal interneurons are abnormal in schizophrenia. Schizophr Res 131(1–3):165–173

    PubMed  PubMed Central  Google Scholar 

  • Kraguljac NV, White DM, Reid MA, Lahti AC (2013a) Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiat 70(12):1294–1302

    CAS  Google Scholar 

  • Kraguljac NV, Srivastava A, Lahti AC (2013b) Memory deficits in schizophrenia: a selective review of functional magnetic resonance imaging (FMRI) studies. Behav Sci (basel) 3(3):330–347

    PubMed  Google Scholar 

  • Kühn S, Musso F, Mobascher A, Warbrick T, Winterer G, Gallinat J (2012) Hippocampal subfields predict positive symptoms in schizophrenia: first evidence from brain morphometry. Transl Psychiatry 2(6):e127

    PubMed  PubMed Central  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. NeuroReport 6(6):869–872

    CAS  PubMed  Google Scholar 

  • Lahti AC, Holcomb HH, Weiler MA, Medoff DR, Tamminga CA (2003) Functional effects of antipsychotic drugs: comparing clozapine with haloperidol. Biol Psych 53(7):601–608

    CAS  Google Scholar 

  • Lauer M, Beckmann H, Senitz D (2003) Increased frequency of dentate granule cells with basal dendrites in the hippocampal formation of schizophrenics. Psychiatry Res 122(2):89–97

    PubMed  Google Scholar 

  • Law AJ, Deakin JF (2001) Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. NeuroReport 12(13):2971–2974

    CAS  PubMed  Google Scholar 

  • Lewis DA (2000a) Distributed disturbances in brain structure and function in schizophrenia. Am J Psychiatry 157(1):1–2

    CAS  PubMed  Google Scholar 

  • Lewis DA (2000b) GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res Rev 31(2–3):270–276

    CAS  PubMed  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324

    CAS  PubMed  Google Scholar 

  • Li W, Ghose S, Gleason K, Begovic A, Perez J, Bartko J, Russo S, Wagner AD, Selemon L, Tamminga CA (2015) Synaptic proteins in the hippocampus indicative of increased neuronal activity in CA3 in schizophrenia. Am J Psych 172(4):373–382

    Google Scholar 

  • Liddle PF, Friston KJ, Frith CD, Hirsch SR, Jones T, Frackowiak RS (1992) Patterns of cerebral blood flow in schizophrenia. Br J Psych 160:179–186

    CAS  Google Scholar 

  • Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles L, Javitt D, Kantrowitz J, Wall MM, Corcoran CM, Schobel SA, Small SA (2018) Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psych 23(8):1764–1772

    CAS  Google Scholar 

  • Lisman JE, Otmakhova NA (2001) Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11(5):551–568

    CAS  PubMed  Google Scholar 

  • Malaspina D, Harkavy-Friedman J, Corcoran C, Mujica-Parodi L, Printz D, Gorman JM, Van Heertum R (2004) Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psych 56(12):931–937

    Google Scholar 

  • Matosin N, Fernandez-Enright F, Lum JS, Engel M, Andrews JL, Gassen NC, Wagner KV, Schmidt MV, Newell KA (2016) Molecular evidence of synaptic pathology in the CA1 region in schizophrenia. NPJ Schizophr 2:16022

    PubMed  PubMed Central  Google Scholar 

  • McCarley RW, Wible CG, Frumin M, Hirayasu Y, Levitt JJ, Fischer IA, Shenton ME (1999) MRI Anatomy of Schizophrenia. Biol Psych 45(9):1099–1119

    CAS  Google Scholar 

  • McCollum LA, Roberts RC (2014) Ultrastructural localization of tyrosine hydroxylase in tree shrew nucleus accumbens core and shell. Neuroscience 271:23–34

    CAS  PubMed  Google Scholar 

  • Medoff DR, Holcomb HH, Lahti AC, Tamminga CA (2001) Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11(5):543–550

    CAS  PubMed  Google Scholar 

  • Meltzer HY (1989) Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 99(Suppl):S18-27

    PubMed  Google Scholar 

  • Meyer D, Bonhoeffer T, Scheuss V (2014) Balance and stability of synaptic structures during synaptic plasticity. Neuron 82(2):430–443

    CAS  PubMed  Google Scholar 

  • Nakahara S, Matsumoto M, van Erp TGM (2018) Hippocampal subregion abnormalities in schizophrenia: a systematic review of structural and physiological imaging studies. Neuropsychopharmacol Rep 38(4):156–166

    PubMed  PubMed Central  Google Scholar 

  • Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psych 55(5):433–440

    CAS  Google Scholar 

  • Nordahl TE, Kusubov N, Carter C, Salamat S, Cummings AM, O’Shora-Celaya L, Eberling J, Robertson L, Huesman RH, Jagust W, Budinger TF (1996) Temporal lobe metabolic differences in medication-free outpatients with schizophrenia via the PET-600. Neuropsychopharmacology 15(6):541–554

    CAS  PubMed  Google Scholar 

  • Porter RH, Eastwood SL, Harrison PJ (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res 751(2):217–231

    CAS  PubMed  Google Scholar 

  • Ramon Y, Cajal SR (1893) Estructura del asta de Ammon. Ann Soc Esp Hist Nat Madrid 22:53–114

    Google Scholar 

  • Ranganath C, Minzenberg MJ, Ragland JD (2008) The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biol Psych 64(1):18–25

    Google Scholar 

  • Remington G (2008) Alterations of dopamine and serotonin transmission in schizophrenia. Prog Brain Res 172:117–140

    CAS  PubMed  Google Scholar 

  • Roberts RC (2017) Postmortem studies on mitochondria in schizophrenia. Schizophr Res 187:17–25

    PubMed  PubMed Central  Google Scholar 

  • Roberts RC (2021) Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion 56:91–101

    CAS  PubMed  Google Scholar 

  • Roberts RC, Roche JK, Conley RR, Lahti AC (2009) Dopaminergic synapses in the caudate of subjects with schizophrenia: relationship to treatment response. Synapse 63(6):520–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts RC, Roche JK, Somerville SM, Conley RR (2012) Ultrastructural Distinctions Between Treatment Responders and Non-Responders in Schizophrenia: Postmortem Studies of the Striatum. In: Labate L (ed) Mental illnesses-evaluation, treatments and implications. InTech, Croatia, pp 261–286

    Google Scholar 

  • Roberts RC, McCollum LA, Schoonover KE, Mabry SJ, Roche JK, Lahti AC (2022) Ultrastructural evidence for glutamatergic dysregulation in schizophrenia. Schizophr Res. https://doi.org/10.1016/j.schres.2020.01.016

    Article  PubMed  Google Scholar 

  • Roeske MJ, Konradi C, Heckers S, Lewis AS (2021) Hippocampal volume and hippocampal neuron density, number and size in schizophrenia: a systematic review and meta-analysis of postmortem studies. Mol Psych 26(7):3524–3535

    Google Scholar 

  • Schobel SA, Lewandowski NM, Corcoran CM, Moore H, Brown T, Malaspina D, Small SA (2009) Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch Gen Psych 66(9):938–946

    Google Scholar 

  • Schobel SA, Chaudhry N, Khan U, Paniagua B, Styner M, Asllani I, Innbar BP, Corcoran CM, Lieberman JA, Moore M, Small SA (2013) Imaging patients with psychosis and a mouse model establishes a spatiotemporal pattern of hippocampal dysfunction and implicates glutamate elevation as a pathogenic driver. Neuron 78(1):81–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonover KE, Farmer CB, Morgan CJ, Sinha V, Odom L, Roberts RC (2021) Abnormalities in the copper transporter CTR1 in postmortem hippocampus in schizophrenia: a subregion and laminar analysis. Schizophr Res 228:60–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segev A, Yanagi M, Scott D, Southcott SA, Lister JM, Tan C, Li W, Birnbaum SG, Kourrich S, Tamminga CA (2020) Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors. Mol Psych 25(11):2832–2843

    Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. PNAS 91:10771–10778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shipley MT (1975) The topographical and laminar organization of the presubiculum’s projection to the ipsi- and contralateral entorhinal cortex in the guinea pig. J Comp Neurol 160(1):127–145

    CAS  PubMed  Google Scholar 

  • Siekmeier PJ, Hasselmo ME, Howard MW, Coyle J (2007) Modeling of context-dependent retrieval in hippocampal region CA1: implications for cognitive function in schizophrenia. Schizophr Res 89(1–3):177–190

    PubMed  Google Scholar 

  • Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L et al (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature 378(6553):176–179

    CAS  PubMed  Google Scholar 

  • Small SA (2014) Isolating pathogenic mechanisms embedded within the hippocampal circuit through regional vulnerability. Neuron 84(1):32–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soghomonian JJ, Sethares C, Peters A (2010) Effects of age on axon terminals forming axosomatic and axodendritic inhibitory synapses in prefrontal cortex. Neuroscience 168(1):74–81

    CAS  PubMed  Google Scholar 

  • Sonnenschein SF, Gomes FV, Grace AA (2020) Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia. Front Psychiatr 11:613

    Google Scholar 

  • Squire LR, Wixted JT (2011) The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci 34:259–288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and size of arbitrary particles using the disector. J Microsc 134:127–136

    CAS  PubMed  Google Scholar 

  • Swanson LW, Wyss JM, Cowan WM (1978) An autoradiographic study of the organization of intrahippocampal association pathways in the rat. J Comp Neurol 181(4):681–715

    CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE, Cowan WM (1980) Evidence that the commissural, associational and septal projections of the region inferior of the hippocampus arise from the same neurons. Brain Res 197(1):207–212

    CAS  PubMed  Google Scholar 

  • Swanson LW, Sawchenko PE, Cowan WM (1981) Evidence for collateral projections by neurons in Ammon’s horn, the dentate gyrus, and the subiculum: a multiple retrograde labeling study in the rat. J Neurosci 1(5):548–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talamini LM, Meeter M, Elvevåg B, Murre JM, Goldberg TE (2005) Reduced parahippocampal connectivity produces schizophrenia-like memory deficits in simulated neural circuits with reduced parahippocampal connectivity. Arch Gen Psychiatry 62(5):485–493

    PubMed  Google Scholar 

  • Talati P, Rane S, Kose S, Blackford JU, Gore J, Donahue MJ, Heckers S (2014) Increased hippocampal CA1 cerebral blood volume in schizophrenia. Neuroimage Clin 5:359–364

    PubMed  PubMed Central  Google Scholar 

  • Tamamaki N, Abe K, Nojyo Y (1987) Columnar organization in the subiculum formed by axon branches originating from single CA1 pyramidal neurons in the rat hippocampus. Brain Res 412(1):156–160

    CAS  PubMed  Google Scholar 

  • Tamminga CA, Medoff DR (2002) Studies in schizophrenia: pathophysiology and treatment. Dialogues Clin Neurosci 4(4):432–437

    PubMed  PubMed Central  Google Scholar 

  • Tamminga CA, Thaker GK, Buchanan R, Kirkpatrick B, Alphs LD, Chase TN, Carpenter WT (1992) Limbic system abnormalities identified in schizophrenia using positron emission tomography with fluorodeoxyglucose and neocortical alterations with deficit syndrome. Arch Gen Psychiatry 49(7):522–530

    CAS  PubMed  Google Scholar 

  • Tamminga CA, Southcott S, Sacco C, Wagner AD, Ghose S (2012) Glutamate dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling. Schizophr Bull 38(5):927–935

    PubMed  PubMed Central  Google Scholar 

  • Velakoulis D, Wood SJ, Wong MT, McGorry PD, Yung A, Phillips L, Smith D, Brewer W, Proffitt T, Desmond P, Pantelis C (2006) Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatry 63(2):139–149

    PubMed  Google Scholar 

  • Walker MA, Highley JR, Esiri MM, McDonald B, Roberts HC, Evans SP, Crow TJ (2002) Estimated neuronal populations and volumes of the hippocampus and its subfields in schizophrenia. Am J Psychiatry 159(5):821–828

    PubMed  Google Scholar 

  • Wang AY, Lohmann KM, Yang CK, Zimmerman EI, Pantazopoulos H, Herring N, Berretta S, Heckers S, Konradi C (2011) Bipolar disorder type 1 and schizophrenia are accompanied by decreased density of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region. Acta Neuropathol 122(5):615–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wegrzyn D, Juckel G, Faissner A (2022) Structural and functional deviations of the hippocampus in schizophrenia and schizophrenia animal models. Int J Mol Sci 23(10):5482

    CAS  PubMed  PubMed Central  Google Scholar 

  • West MJ, Gundersen HJ (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Com Neurol 296:1–22

    CAS  Google Scholar 

  • Williams LE, Blackford JU, Luksik A, Gauthier I, Heckers S (2013) Reduced habituation in patients with schizophrenia. Schizophr Res 151(1–3):124–132

    PubMed  PubMed Central  Google Scholar 

  • Yassa MA, Stark CE (2011) Pattern separation in the hippocampus. Trends Neurosci 34(10):515–525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZJ, Reynolds GP (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 55(1–2):1–10

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Maryland and Alabama Brain Collections and the brain donors and their families.

Funding

Dr. Roberts is a member of the Scientific Advisory Board of the Tourette’s Association of America, and serves as their Brain Tissue Coordinator. The work was partially funded by NIMH MH R21MH127513 (to RCR) and the SPIN program at UAB (KGM).

Author information

Authors and Affiliations

Authors

Contributions

Author RCR was responsible for experimental design, worked with and mentored authors ELR, LRB, MEF and KGM, identified all synapses and edited the manuscript. Author CBF wrote the first draft of the manuscript, ensured that the appropriate locations were photographed, performed the electron microscopic photography, collected data, organized and supervised the students. Author ELR performed the measurements of postsynaptic density. Authors LRB and MEF performed all of the mitochondrial measurements. Author KGM performed all of the immunohistochemical experiments and analysis. Author JKR cut the tissue for electron microscopy and verified proper location. Manuscript section input was also performed by authors ELR, LRB and MEF.

Corresponding author

Correspondence to Rosalinda C. Roberts.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest concerning this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farmer, C.B., Roach, E.L., Bice, L.R. et al. Excitatory and inhibitory imbalances in the trisynaptic pathway in the hippocampus in schizophrenia: a postmortem ultrastructural study. J Neural Transm 130, 949–965 (2023). https://doi.org/10.1007/s00702-023-02650-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-023-02650-5

Keywords

Navigation