Skip to main content
Log in

Thoracic shock wave injury causes behavioral abnormalities in mice

  • Experimental research - Brain Injury
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Mild traumatic brain injury (mTBI) is caused by complex mechanisms of systemic, local and cerebral responses to blast exposure. However, the molecular mechanisms of cognitive impairment after exposure to blast waves are not clearly known. We tested the hypothesis that thoracic injury induced functional and morphological impairment in the brain, leading to behavioral abnormalities.

Methods

Mice were exposed to laser-induced shock waves (LISWs) impacting the thorax and assessed for behavioral outcome at 7 and 28 days post injury. Hippocampus and lung were collected for histopathological analysis and gene expression profiling after injury.

Results

Thoracic injury transiently decreased the heart rate, blood pressure, peripheral oxyhemoglobin saturation and cerebral blood flow immediately after LISW exposure. Although LISWs exposure caused pulmonary contusions, hemorrhage was not apparent in the brain. At 7 and 28 days after, the injured mice exhibited impaired short-term memory and depression-like behavior compared with controls. Histological assessments showed an increase in neuronal cell death after shock wave exposure, especially in the CA3 region of the hippocampus. Moreover, shock wave exposure altered the expression of functionally relevant genes in the hippocampus at 1 h and 1 day post injury.

Conclusions

Our findings indicate that the LISW-induced thoracic injury with no direct impact on the brain affected the hippocampal gene expression and led to morphological alterations, resulting in behavioral abnormalities. Therefore, body protection may be extremely important in the effective prevention against blast-induced alterations in brain function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Auer R, Sutherland G (2002) Hypoxia and related conditions. In: Graham D, Lantos P (eds) Greenfield’s neuropathology. Arnold, London, pp 233–280

    Google Scholar 

  2. Belanger HG, Kretzmer T, Yoash-Gantz R, Pickett T, Tupler LA (2009) Cognitive sequelae of blast-related versus other mechanisms of brain trauma. J Int Neuropsychol Soc 15:1–8

    Article  PubMed  Google Scholar 

  3. Bhattacharjee Y (2008) Shell shock revisited: solving the puzzle of blast trauma. Science 319:406–408

    Article  CAS  PubMed  Google Scholar 

  4. Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28:11760–11767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cernak I (2010) The importance of systemic response in the pathobiology of blast-induced neurotrauma. Front Neurol 1:151

    Article  PubMed Central  PubMed  Google Scholar 

  6. Cernak I, Merkle AC, Koliatsos VE, Bilik JM, Luong QT, Mahota TM, Xu L, Slack N, Windle D, Ahmed FA (2011) The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol Dis 41:538–551

    Article  PubMed  Google Scholar 

  7. Cernak I, Noble-Haeusslein LJ (2010) Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J Cereb Blood Flow Metab 30:255–266

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cernak I, Savic J, Malicevic Z, Zunic G, Radosevic P, Ivanovic I, Davidovic L (1996) Involvement of the central nervous system in the general response to pulmonary blast injury. J Trauma 40:S100–S104

    Article  CAS  PubMed  Google Scholar 

  9. Cernak I, Vink R, Zapple DN, Cruz MI, Ahmed F, Chang T, Fricke ST, Faden AI (2004) The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol Dis 17:29–43

    Article  CAS  PubMed  Google Scholar 

  10. Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer RD, Alberini CM (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469:491–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Courtney AC, Courtney MW (2009) A thoracic mechanism of mild traumatic brain injury due to blast pressure waves. Med Hypotheses 72:76–83

    Article  CAS  PubMed  Google Scholar 

  12. Courtney MW, Courtney AC (2011) Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms. Neuroimage 54(Suppl 1):S55–S61

    Article  PubMed  Google Scholar 

  13. Dellu F, Contarino A, Simon H, Koob GF, Gold LH (2000) Genetic differences in response to novelty and spatial memory using a two-trial recognition task in mice. Neurobiol Learn Mem 73:31–48

    Article  CAS  PubMed  Google Scholar 

  14. Effgen GB, Vogel EW 3rd, Lynch KA, Lobel A, Hue CD, Meaney DF, Bass CR, Morrison B 3rd (2014) Isolated primary blast alters neuronal function with minimal cell death in organotypic hippocampal slice cultures. J Neurotrauma 31:1202–1210

    Article  PubMed  Google Scholar 

  15. Feng JF, Zhao X, Gurkoff GG, Van KC, Shahlaie K, Lyeth BG (2012) Post-traumatic hypoxia exacerbates neuronal cell death in the hippocampus. J Neurotrauma 29:1167–1179

    Article  PubMed Central  PubMed  Google Scholar 

  16. Gonzalez AM, Podvin S, Lin SY, Miller MC, Botfield H, Leadbeater WE, Roberton A, Dang X, Knowling SE, Cardenas-Galindo E, Donahue JE, Stopa EG, Johanson CE, Coimbra R, Eliceiri BP, Baird A (2011) Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury. Fluids Barriers CNS 8:6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gotze S, Feldhaus V, Traska T, Wolter M, Reifenberger G, Tannapfel A, Kuhnen C, Martin D, Muller O, Sievers S (2009) ECRG4 is a candidate tumor suppressor gene frequently hypermethylated in colorectal carcinoma and glioma. BMC Cancer 9:447

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA (2008) Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 358:453–463

    Article  CAS  PubMed  Google Scholar 

  19. Kamnaksh A, Kovesdi E, Kwon SK, Wingo D, Ahmed F, Grunberg NE, Long J, Agoston DV (2011) Factors affecting blast traumatic brain injury. J Neurotrauma 28:2145–2153

    Article  PubMed  Google Scholar 

  20. Kreisman NR, Soliman S, Gozal D (2000) Regional differences in hypoxic depolarization and swelling in hippocampal slices. J Neurophysiol 83:1031–1038

    CAS  PubMed  Google Scholar 

  21. Kujuro Y, Suzuki N, Kondo T (2010) Esophageal cancer-related gene 4 is a secreted inducer of cell senescence expressed by aged CNS precursor cells. Proc Natl Acad Sci U S A 107:8259–8264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Lisowski P, Wieczorek M, Goscik J, Juszczak GR, Stankiewicz AM, Zwierzchowski L, Swiergiel AH (2013) Effects of chronic stress on prefrontal cortex transcriptome in mice displaying different genetic backgrounds. J Mol Neurosci 50:33–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mao H, Elkin BS, Genthikatti VV, Morrison B 3rd, Yang KH (2013) Why is CA3 more vulnerable than CA1 in experimental models of controlled cortical impact-induced brain injury? J Neurotrauma 30:1521–1530

    Article  PubMed Central  PubMed  Google Scholar 

  24. Miller AP, Shah AS, Aperi BV, Budde MD, Pintar FA, Tarima S, Kurpad SN, Stemper BD, Glavaski-Joksimovic A (2015) Effects of blast overpressure on neurons and glial cells in rat organotypic hippocampal slice cultures. Front Neurol 6:20

    PubMed Central  PubMed  Google Scholar 

  25. Pedros I, Petrov D, Allgaier M, Sureda F, Barroso E, Beas-Zarate C, Auladell C, Pallas M, Vazquez-Carrera M, Casadesus G, Folch J, Camins A (2014) Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer’s disease. Biochim Biophys Acta 1842:1556–1566

    Article  CAS  PubMed  Google Scholar 

  26. Podvin S, Gonzalez AM, Miller MC, Dang X, Botfield H, Donahue JE, Kurabi A, Boissaud-Cooke M, Rossi R, Leadbeater WE, Johanson CE, Coimbra R, Stopa EG, Eliceiri BP, Baird A (2011) Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury. PLoS One 6, e24609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Sajja VS, Galloway M, Ghoddoussi F, Kepsel A, VandeVord P (2013) Effects of blast-induced neurotrauma on the nucleus accumbens. J Neurosci Res 91:593–601

    Article  CAS  PubMed  Google Scholar 

  28. Sajja VS, Galloway MP, Ghoddoussi F, Thiruthalinathan D, Kepsel A, Hay K, Bir CA, VandeVord PJ (2012) Blast-induced neurotrauma leads to neurochemical changes and neuronal degeneration in the rat hippocampus. NMR Biomed 25:1331–1339

    Article  CAS  PubMed  Google Scholar 

  29. Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M (2000) Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci U S A 97:14731–14736

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sato S, Kawauchi S, Okuda W, Nishidate I, Nawashiro H, Tsumatori G (2014) Real-time optical diagnosis of the rat brain exposed to a laser-induced shock wave: observation of spreading depolarization, vasoconstriction and hypoxemia-oligemia. PLoS One 9, e82891

    Article  PubMed Central  PubMed  Google Scholar 

  31. Satoh Y, Endo S, Ikeda T, Yamada K, Ito M, Kuroki M, Hiramoto T, Imamura O, Kobayashi Y, Watanabe Y, Itohara S, Takishima K (2007) Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory. J Neurosci 27:10765–10776

    Article  CAS  PubMed  Google Scholar 

  32. Satoh Y, Sato S, Saitoh D, Tokuno S, Hatano B, Shimokawaji T, Kobayashi H, Takishima K (2010) Pulmonary blast injury in mice: a novel model for studying blast injury in the laboratory using laser-induced stress waves. Lasers Surg Med 42:313–318

    Article  PubMed  Google Scholar 

  33. Simard JM, Pampori A, Keledjian K, Tosun C, Schwartzbauer G, Ivanova S, Gerzanich V (2014) Exposure of the thorax to a sublethal blast wave causes a hydrodynamic pulse that leads to perivenular inflammation in the brain. J Neurotrauma 31:1292–1304

    Article  PubMed Central  PubMed  Google Scholar 

  34. Takeo C, Ikeda K, Horie-Inoue K, Inoue S (2009) Identification of Igf2, Igfbp2 and Enpp2 as estrogen-responsive genes in rat hippocampus. Endocr J 56:113–120

    Article  CAS  PubMed  Google Scholar 

  35. Takeuchi S, Nawashiro H, Sato S, Kawauchi S, Nagatani K, Kobayashi H, Otani N, Osada H, Wada K, Shima K (2013) A better mild traumatic brain injury model in the rat. Acta Neurochir Suppl 118:99–101

    PubMed  Google Scholar 

  36. Tomida S, Mamiya T, Sakamaki H, Miura M, Aosaki T, Masuda M, Niwa M, Kameyama T, Kobayashi J, Iwaki Y, Imai S, Ishikawa A, Abe K, Yoshimura T, Nabeshima T, Ebihara S (2009) Usp46 is a quantitative trait gene regulating mouse immobile behavior in the tail suspension and forced swimming tests. Nat Genet 41:688–695

    Article  CAS  PubMed  Google Scholar 

  37. Vandevord PJ, Bolander R, Sajja VS, Hay K, Bir CA (2012) Mild neurotrauma indicates a range-specific pressure response to low level shock wave exposure. Ann Biomed Eng 40:227–236

    Article  PubMed  Google Scholar 

  38. Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, Mehta N, Suter B, Bhide PG, Lo EH, Ericsson M, Moskowitz MA (2008) Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice. J Cereb Blood Flow Metab 28:490–505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zetterberg H, Smith DH, Blennow K (2013) Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 9:201–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Research Promotion Program for Defense Medicine from the National Defense Medical College (D.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Miyazaki.

Ethics declarations

Conflicts of interest

None.

Additional information

Comment

The study confirms that blast injury damages the brain by indirect multiple hit mechanisms principally involving the lungs.

As shown by others but not demonstrated here, the thoracic blast is most probably transmitted by the venous system intracranially as a pressure wave and produces cellular micro-lesions best observed in the CA3 region of the hippocampus. The authors show here that the thoracic blast induces a patho-physiological response resulting in a temporary brain hypoxia that added to the micro-mechanical injury results in delayed behavioural alterations that are mirrored by histopathological observations of delayed non-apoptotic neuronal necrosis mainly observed in the CA3 region. The authors also report acute changes in the gene expression profile of hippocampus neurones, further supporting the hypothesis that neurones respond to a metabolic stress.

Protecting the lungs saves the brain from blast injury!

Philippe Bijlenga

Geneva, Switzerland

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Thoracic shock wave injury affects the hippocampal gene expression. The functional categories of the thoracic injury-regulated genes. The genes were categorized according to their biological function. Each bar represents the actual number of genes (PDF 101 kb)

Table S1

Genes upregulated in hippocampus at 1 h after shock wave exposure (PDF 11 kb)

Table S2

Genes downregulated in hippocampus at 1 h after shock wave exposure (PDF 5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, H., Miyawaki, H., Satoh, Y. et al. Thoracic shock wave injury causes behavioral abnormalities in mice. Acta Neurochir 157, 2111–2120 (2015). https://doi.org/10.1007/s00701-015-2613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-015-2613-3

Keywords

Navigation