Skip to main content
Log in

Genetic relationships in European and Asiatic Buxus species based on AFLP markers, genome sizes and chromosome numbers

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genetic relationships and diversity within the European and Asiatic Buxus species were analysed using AFLP, genome size analysis and chromosome counts. Based on these results two major clusters could be defined. One genetic cluster contained B. sempervirens and B. balearica, European species, and B. colchica, an Asiatic species but with leaf morphology similar to B. sempervirens. Species in this cluster were characterised by a genome size between 1.38 and 1.69 pg 2C−1 and a chromosome number of 2n = 2x = 28 (diploid). Only four B. sempervirens cultivars within this cluster were triploid. A second cluster contained the Asiatic Buxus species B. microphylla, B. harlandii, B. hyrcana, B. myrica, B. henryi, B. bodinieri and B. wallichiana. Within this second genetic cluster three different ploidy levels could be observed. B. harlandii, B. hyrcana and nine B. microphylla cultivars were tetraploid (2n = 4x = 56) with a genome size of >2.5 pg 2C−1. Fifteen other B. microphylla cultivars were triploid (2n = 3x = 42). The other Asiatic Buxus species, B. henryi, B. bodinieri and eight B. microphylla cultivars, were diploid with a genome size of ca. 1.5 pg 2C−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barakat A, Carels N, Bernardi G (1997) The distribution of genes in the genomes of Gramineae. Proc Nat Acad Sci USA 94:6857–6861

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90

    Article  PubMed  CAS  Google Scholar 

  • Carlquist S (1982) Wood anatomy of Buxaceae: correlations with ecology and phylogeny. Flora 172:463–491

    Google Scholar 

  • Cerbah M, Mortreau E, Brown S, Siljak-Yakovlev S, Bertrand H, Lambert C (2001) Genome size variation and species relationships in the genus Hydrangea. Theor Appl Genet 103:45–51

    Article  CAS  Google Scholar 

  • Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants, 2nd edn. George Allen & Unwin, London

    Google Scholar 

  • Dimitrova D, Ebert I, Greilhuber J, Kozhuharov S (1999) Karyotype constancy and genome size variation in Bulgarian Crepis foetida s.l. (Asteraceae). Plant Syst Evol 217:245–257

    Article  Google Scholar 

  • Dolezel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytometry 77(A):635–642

    Article  PubMed  Google Scholar 

  • Dolezel J, Barto J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51(A):127–128

    Article  PubMed  CAS  Google Scholar 

  • Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue: CTAB method. Phytochem Bull 19:11

    Google Scholar 

  • Gentry AH, Aymard G (1993) A new species of Styloceras (Buxaceae) from Peru. Novon 3:142–144

    Article  Google Scholar 

  • Greilhuber J, Dolezel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes chromosomes and genomes. Wiley-VCH, Weinheim, pp 67–101

    Google Scholar 

  • Hanson L, Brown RL, Boyd A, Johnson MAT, Bennett MD (2003) First nuclear DNA C-values for 28 angiosperm genera. Ann Bot 91:1–8

    Article  Google Scholar 

  • Hawkins JS, Hu G, Rapp RA, Grafenberg JL, Wendel JF (2008) Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. Genome 51:11–18

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson J (1967) The genera of flowering plants (Angiospermae), vol 2. Clarendon Press, Oxford

    Google Scholar 

  • Jarvis CE (1989) A review of the family Buxaceae Dumortier. In: Crane PR, Blackmore S (eds) Evolution, systematics, and fossil history of the Hamamelidae, vol I. Science Publications, Oxford, pp 273–278

    Google Scholar 

  • Jeschke MR, Tranel PJ, Rayburn AL (2003) DNA content analysis of smooth pigweed (Amaranthus hybridus) and tall waterhemp (A. tuberculatus): implications for hybrid detection. Weed Sci 51:1–3

    Article  CAS  Google Scholar 

  • Johnston MTJ, Husband BC, Burton TL (2003) Habitat differentiation between diploid and tetraploid Galax urceolata. Int J Plant Sci 164:703–710

    Article  Google Scholar 

  • Karrenberg S, Widmer A (2008) Ecologically relevant genetic variation from a non-Arabidopsis perspective. Curr Opin Plant Biol 11:156–162

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190

    Article  PubMed  CAS  Google Scholar 

  • Köhler E (1981) Pollen morphology of the West Indian-Central American species of the genus Buxus L. (Buxaceae) with reference to taxonomy. Pollen Spores 23:38–91

    Google Scholar 

  • Köhler E (1984) Zur Blattnervatur der neotropischen Buxus-Arten und ihre Bedeutung für die Systematik (Buxaceae). Flora 175:345–374

    Google Scholar 

  • Köhler E (1990) Zur Blattnervatur der afrikanischen Buxus- und Notobuxus-Arten. Feddes Repertorium 101:243–255

    Article  Google Scholar 

  • Köhler E (1994) Parallel evolution of pollen characters in the genus Buxus L. (Buxaceae). Acta Bot Gallica 141:223–232

    Google Scholar 

  • Köhler E, Brückner P (1982) Die Pollenmorphologie der afrikanischen Buxus- und Notobuxus-Arten (Buxaceae) und ihre systematische Bedeutung. Grana 21:71–82

    Article  Google Scholar 

  • Köhler E, Brückner P (1983) Zur Pollenmorphologie und systematischen Stellung der Gattung Simmondsia Nutt. Wiss Z Jena 32:945–955

    Google Scholar 

  • Köhler E, Brückner P (1989) The genus Buxus (Buxaceae): aspects of its differentiation in space and time. Plant Syst Evol 162:267–283

    Article  Google Scholar 

  • Köhler E, Brückner P (1990) Considerations on the evolution and chorogenesis of the genus Buxus (Buxaceae). Mem NY Bot Gard 55:153–168

    Google Scholar 

  • Köhler E, Schirarend C (1989) Zur Blattanatomie der neotropischen Buxus-Arten und ihre Bedeutung für die Systematik (Buxaceae). Flora 183:1–38

    Google Scholar 

  • Kubatova B, Travnicek P, Bastlova D, Curn V, Suda J (2008) DNA ploidy level variation in native and invasive populations of Lythrum salicaria at a large geographical scale. J Biogeogr 35:167–176

    Google Scholar 

  • Lafuma L, Balkwill K, Imbert E, Verlaque R, Maurice S (2003) Ploidy level and origin of the European invasive weed Senecio inaequidens (Asteraceae). Plant Systematics Evolution 243:59–72

    Article  Google Scholar 

  • Larson PD (1999) Boxwood: its history, cultivation, propagation and descriptions. Foliar Press, Virginia

    Google Scholar 

  • Lysak MA, Dolezelova M, Horry JP, Swennen R, Dolezel J (1999) Flow cytometric analysis of nuclear DNA content in Musa. Theor Appl Genet 98:1344–1350

    Article  CAS  Google Scholar 

  • Mahelka V, Suda J, Jarolimova V, Travnicek P, Krahulec F (2005) Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae: Triticeae) and their hybrid. Folia Geobot 40:367–384

    Article  Google Scholar 

  • Murray BG, De Lange PJ, Ferguson AR (2005) Nuclear DNA variation, chromosome numbers and polyploidy in the endemic and indigenous grass flora of New Zealand. Ann Bot 96:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Olivier D (1882) Notobuxus natalensis Oliv. In: Hooker JD (ed) Icones plantarum 14, table 1400. London

  • Phillips ED (1943) Some changes in nomenclature IV. J S Afr Bot 9:137–140

    Google Scholar 

  • Pijnacker LP, Ferwerda MA (1984) Giemsa C-banding of potato chromosomes. Can J Genet Cytol 26:415–419

    Google Scholar 

  • Reeves A (2001) Micromeasure: a new computer program for the collection and analysis of cytogenetic data. Genome 44:439–443

    Article  PubMed  CAS  Google Scholar 

  • Suda J, Malcova R, Abazid D, Banas M, Prochazka F, Sida O, Stech M (2004) Cytotype distribution in Empetrum (Ericaceae) at various spatial scales in the Czech Republic. Folia Geobot 39:161–171

    Article  Google Scholar 

  • Suda J, Kron P, Husband BC, Travnicek P (2007) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells: analysis of genes chromosomes and genomes. Wiley-VCH, Weinheim, pp 103–130

    Google Scholar 

  • Van De Peer Y, De Wachter R (1994) TREECON for windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Van Laere K, Leus L, Van Huylenbroeck J, Van Bockstaele E (2009) Interspecific hybridisation and genome size analysis in Buddleja. Euphytica 166:445–456

    Article  Google Scholar 

  • Van Trier H, Hermans D (2005) Buxus. Stichting Kunstboek, Oostkamp

    Google Scholar 

  • von Balthazar M, Endress PK (2002a) Development of inflorescences and flowers in Buxaceae and the problem of perianth interpretation. Int J Plant Sci 163(6):847–876

    Article  Google Scholar 

  • von Balthazar M, Endress PK (2002b) Reproductive structures and systematics of Buxaceae. Bot J Linn Soc 140:193–228

    Article  Google Scholar 

  • von Balthazar M, Endress PK, Qiu YL (2000) Phylogenetic relationships in Buxaceae based on nuclear internal transcribed spacers and plastid ndhF sequences. Int J Plant Sci 161:785–792

    Article  Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    Article  PubMed  CAS  Google Scholar 

  • Zonneveld BJM (2001) Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Plant Syst Evol 229:125–130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrijn Van Laere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Laere, K., Hermans, D., Leus, L. et al. Genetic relationships in European and Asiatic Buxus species based on AFLP markers, genome sizes and chromosome numbers. Plant Syst Evol 293, 1–11 (2011). https://doi.org/10.1007/s00606-011-0422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0422-6

Keywords

Navigation