Skip to main content
Log in

Characterization of AhMITE1 transposition and its association with the mutational and evolutionary origin of botanical types in peanut (Arachis spp.)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

AhMITE1 is an active miniature inverted repeat transposable element (MITE) in peanut (Arachis hypogaea L). Its transpositional activity from a particular (FST1-linked) site within the peanut genome was checked using AhMITE1-specifc PCR, which used a forward primer annealing to the 5′-flanking sequence and a reverse primer binding to AhMITE1. It was found that transposition activation was induced by stresses such as ethyl methane sulfonate (EMS), gamma irradiation, environmental conditions, and tissue culture. Excision and insertion of AhMITE1 at this particular site among the mutants led to gross morphological changes resembling alternate subspecies or botanical types. Analysis of South American landraces revealed the presence of AhMITE1 at the site among most of the spp. fastigiata types, whereas the element was predominantly missing from spp. hypogaea types, indicating its strong association. Four accessions of the primitive allotetraploid, A. monticola were devoid of AhMITE1 at the site, indicating only recent activation of the element, possibly because of the “genomic shock” resulting from hybridization followed by allopolyploidization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bhat RS, Patil VU, Chandrashekar TM, Sujay V, Gowda MVC, Kuruvinashetti MS (2008) Recovering flanking sequence tags of miniature inverted-repeat transposable element by thermal asymmetric interlaced-PCR in peanut. Curr Sci 95:452–453

    CAS  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  CAS  PubMed  Google Scholar 

  • Cronn R, Wendel JF (2004) Cryptic trysts, genomic mergers, and plant speciation. New Phytol 161:133–142

    Article  CAS  Google Scholar 

  • Favero AP, Simpson CE, Valls JFM, Vello NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaensis, A. duranensis, and A. hypogaea. Crop Sci 46:1546–1552

    Article  Google Scholar 

  • Gowda MVC, Nadaf HL, Sheshagiri R (1996) The role of mutations in intraspecific differentiation of groundnut (Arachis hypogaea L.). Euphytica 90:105–113

    Google Scholar 

  • Gowda MVC, Bhat RS, Motagi BN, Sujay V, Varshakumari, Bhat S (2010) Association of high-frequency origin of late leaf spot resistant mutants with AhMITE1 transposition in peanut. Plant Breed 129:567–569

  • Halward TM, Thomas Stalker H, Larue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013–1020

    CAS  Google Scholar 

  • Harlan JR, de Wet JMJ (1975) On Ö Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390

    Article  Google Scholar 

  • He G, Prakash C (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Evol 48:347–352

    Article  Google Scholar 

  • Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR et al (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  CAS  PubMed  Google Scholar 

  • Khedikar Y, Gowda M, Sarvamangala C, Patgar K, Upadhyaya H, Varshney R (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet. doi:10.1007/s00122-010-1366-x

  • Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170

    Article  CAS  PubMed  Google Scholar 

  • Knauft DA, Gorbet DW (1989) Genetic diversity among peanut cultivars. Crop Sci 29:1417–1422

    Article  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Krapovickas A (1969) The origin, variability and spread of the groundnut (Arachis hypogaea). In: Ucko RJ, Dimbledy WC (eds) The domestication and exploitation of plant and animals. Gerald Duckworth Co. Ltd, London, pp 427–441

    Google Scholar 

  • Krapovickas A (1973) Evolution of the genus Arachis. In: Moav R (ed) Agricultural genetics-selected topics. Wiley, New York, pp 135–151

    Google Scholar 

  • Krapovickas A, Rigoni VA (1957) Nuevas especies de Arachis vinculadas al problema del origen del mani. Darwiniana 11:431–455

    Google Scholar 

  • Leitch IJ, Bennett MD (1997) Polyploidy in angiosperms. Trends Plant Sci 2:470–476

    Article  Google Scholar 

  • Liu B, Wendel JF (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365–379

    Article  CAS  PubMed  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW et al (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221

    Article  CAS  PubMed  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–424

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  CAS  PubMed  Google Scholar 

  • Motagi BN, Gowda MVC, Sheshagiri R (1996) Mutants resistant to foliar diseases in groundnut (Arachis hypogaea L.). Curr Sci 71:582–584

    Google Scholar 

  • Mouli C, Kale DM, Patil SH (1979) Sequential flowering large pod Trombay groundnuts (Abst.) Symposium on the Role of Induced Mutations in Crop Improvement Hyderabad, India

  • Nageswara Rao G (2007) Statistics for agricultural sciences. Oxford and IBH Publishing company, New Delhi, pp 98–99

  • Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y et al (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA 103:17620–17625

    Article  CAS  PubMed  Google Scholar 

  • Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H et al (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172

    Article  CAS  PubMed  Google Scholar 

  • Paik-Ro OG, Smith RL, Knauft DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208

    Article  CAS  Google Scholar 

  • Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502

    Article  CAS  PubMed  Google Scholar 

  • Perry A (1968) A radiation breeding experiment with peanuts, iv. Effects of the vegetative and reproductive phases of the branching system (NC4–18.5 KR). Rad Bot 8:109–119

    Google Scholar 

  • Prasad MVR (1989) Genetic differentiation in Arachis hypogaea L. In: Farook SA, Khan IA (eds). Recent advances in genetics and cytogenetics. Premier Publishing House Hyderabad, India, pp 53–55

    Google Scholar 

  • Prasad MVR, Kaul S, Jain HK (1984) Induced mutants of Peanut for canopy and pod bearing characters. Indian J Genet 44:25–34

    Google Scholar 

  • Ravi K, Hari U, Sangam D, David H, Varshney RK (2010) Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol 10:15

    Article  Google Scholar 

  • Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X et al (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990

    Article  CAS  PubMed  Google Scholar 

  • Singh AK (1988) Putative genome donors of Arachis hypogaea (Fabaceae), evidence from crosses with synthetic amphidiploids. Plant Syst Evol 160:143–151

    Article  Google Scholar 

  • Singh AK, Gurtu S, Jambunathan R (1993) Phylogenetic relationships in the genus Arachis based on seed protein profiles. Euphytica 74:219–225

    Article  CAS  Google Scholar 

  • Singh AK, Smartt J, Simpson CE, Raina SN (1998) Genetic variation vis-à-vis molecular polymorphism in groundnut, Arachis hypogaea L. Genet Resour Crop Evol 45:119–126

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92:8089–8091

    Article  CAS  PubMed  Google Scholar 

  • Stebbins GL (1951) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Van den Broeck D, Maes T, Sauer M, Zethof J, De Keukeleire P, D’hauw M et al (1998) Transposon Display identifies individual transposable elements in high copy number lines. Plant J 13:121–129

    PubMed  Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R et al (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739

    Article  CAS  PubMed  Google Scholar 

  • Wessler SR (1998) Transposable elements associated with normal plant genes. Physiol Plant 103:581–586

    Article  CAS  Google Scholar 

  • Wessler SR (2001) Plant transposable elements. A hard act to follow. Plant Physiol 125:149–151

    CAS  Google Scholar 

  • Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Weeden NF, Kochert G (1996) Genome mapping in legumes (Family Fabaceae). In: Paterson AH (ed) Genome mapping in plants. Landes Biomedical Press, Austin, pp 211–277

    Google Scholar 

  • Zhang Q, Arbuckle J, Wessler SR (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci USA 97:1160–1165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr H.D. Upadhyaya, ICRISAT, for providing the wild peanut species, and to Mr Ravi Koppulu, ICRISAT, for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. C. Gowda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gowda, M.V.C., Bhat, R.S., Sujay, V. et al. Characterization of AhMITE1 transposition and its association with the mutational and evolutionary origin of botanical types in peanut (Arachis spp.). Plant Syst Evol 291, 153–158 (2011). https://doi.org/10.1007/s00606-010-0373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0373-3

Keywords

Navigation