Skip to main content
Log in

The Cauchy problem for a combustion model in a porous medium with two layers

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We prove the existence of local and global in time solutions of the Cauchy problem for a combustion model in a porous medium with two layers. The model is a system of four equations, consisting of two nonlinear reaction–convection–diffusion equations coupled with two ordinary differential equations, with the coupling occurring in both the reaction functions and in the differential operator coefficients. To obtain the local solution, we first construct an iteration scheme of approximate solutions to the system. Using the continuous dependence of solutions for parabolic equations with respect to the coefficients of the equations, we show that the constructed iteration scheme contains a sequence which converges to a local solution of the system, under the assumption that the initial data are Lipschitz continuous, bounded and non negative. We show that this solution can be extended globally, if the initial data are additionally in the Lebesgue space \(L^p\), for some \(p\in (1,\infty )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We note that the function \(f(s)=\text{ e }^{-\frac{E}{s}}\) can be extended smoothly by zero to \(s\le 0\).

  2. If g is a bounded function defined in \(\mathbb {R}\), \(\Vert g\Vert _\infty :=\sup _{x\in \mathbb {R}}|g(x)|\).

  3. If \(T<\infty \) and the function \(u_i\) is defined and continuous in \(\mathbb {R}\times [0,T]\), obviously we can extend the inequality \(0\le u_i(x,t)\le \varphi (t)\) to \(t=T\).

  4. Here the term “loc” denotes “locally” in time, i.e. a function \(u\in C_{loc}^{1,\frac{1}{2}}(\mathbb {R}\times [0,\infty ))\cap L_{loc}^\infty ( (0,\infty ) ; L^p(\mathbb {R}) )\) if \(u|\mathbb {R}\times [0,T]\in C^{1,\frac{1}{2}}(\mathbb {R}\times [0,T])\cap L^\infty ((0,T) ; L^p(\mathbb {R}) )\), for any \(T>0\).

  5. Similarly as in the statement of Theorem 2, here the term “loc” denotes “locally” in time, i.e. a function \(u\in C_{\mathrm{loc}}^{1,\frac{1}{2}}(\mathbb {R}\times [0,T^*))\cap L_{\mathrm{loc}}^\infty ( (0,T^*) ; L^p(\mathbb {R}) )\) if \(u|\mathbb {R}\times [0,T]\in C^{1,\frac{1}{2}}(\mathbb {R}\times [0,T])\cap L^\infty ((0,T) ; L^p(\mathbb {R}) )\), for any \(T\in (0,T^*)\).

  6. This terminology was used by R. Finn in the MathSciNet review #MR0064286 (16,259b). In this review he also points out that this method was “developed by Picard [see, e.g., Courant and Hilbert, Methoden der mathematischen Physik, Bd II, Springer, Berlin, 1937, pp. 274–276], Bernstein [Math. Ann. 69, 82–136 (1910); Doklady Akad. Nauk SSSR (N.S.) 18, 385–388 (1938)] and others”.

  7. We would like to thank Professor Lucas C. F. Ferreira for bringing our attention to this fact and suggesting us to take the initial data \(u_{i,0}\) in \(L^p\).

References

  1. Chueh, K.N., Conley, C.C., Smoller, J.A.: Positively invariant regions for systems of nonlinear diffusion equations. Indiana Univ. Math. J. 26(2), 373–392 (1977)

    Article  MathSciNet  Google Scholar 

  2. Da Mota, J.C., Santos, M.M.: An application of the monotone iterative method to a combustion problem in porous media. Nonlinear Anal. Real World Appl. 12, 1192–1201 (2010)

    Article  MathSciNet  Google Scholar 

  3. Da Mota, J.C., Schecter, S.: Combustion fronts in a porous medium with two layers. J. Dyn. Differ. Equ. 18(3), 615–665 (2006)

    Article  MathSciNet  Google Scholar 

  4. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  5. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  6. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  7. Friedman, A.: Partial Differential Equations of Parabolic Type. Dover Publications, New York (2008)

    Google Scholar 

  8. Il’IN, A.M., Kalashnikov, A.S., Oleinik, O.A.: Linear equations of the second order of parabolic type. Russ. Math. Surv. 17(1), 1–143 (1962)

    Article  Google Scholar 

  9. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type (translated from Russian by S. Smith). American Mathematical Society, Providence (1968)

    Book  Google Scholar 

  10. Oleinik, O.A., Kruzhkov, S.N.: Quasi-linear second-order parabolic equations with many independent variables. Russ. Math. Surv. 16(5), 105–146 (1961)

    Article  Google Scholar 

  11. Oleinik, O.A., Venttsel’, T.D.: Cauchy’s problem and the first boundary problem for a quasilinear equation of parabolic type (Russian). Doklady Akad. Nauk SSSR (N.S.) 97, 605–608 (1954)

    MathSciNet  MATH  Google Scholar 

  12. Oleinik, O.A., Venttsel’, T.D.: The first boundary problem and the Cauchy problem for quasi-linear equations of parabolic type (Russian). Math. Sb. N.S. 41(83), 105–128 (1957)

    MATH  Google Scholar 

  13. Olver, F.W.J.: Asymptotics and Special Functions. A K Peters, Natick (1974)

    MATH  Google Scholar 

  14. Rothe, F.: Global solutions of reaction-diffusion systems. In: Dold, A., Eckmann, B. (eds.) Lecture Notes in Mathematics. Springer, Berlin (1984)

    Google Scholar 

  15. Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, 2nd edn. Springer, New York (1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Santos.

Additional information

Communicated by A. Constantin.

R.A. Santos thanks CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil, for financial support through a scholarship during his doctorate at IMECC-UNICAMP, under Project # 23038.002308/2010-48-AUXPE 747/2010. J. C. da Mota thanks FAPEG (Fundação de Amparo à Pesquisa do Estado de Goiás), Brazil, for partial support of this work, under Grant # 05/2012-Universal.

Appendix: Proof of Proposition 1

Appendix: Proof of Proposition 1

In this Section, we show the continuous dependence of the fundamental solutions for parabolic equations with respect to the coefficients of the equations and, as a consequence, we show Proposition 1 stated in Sect. 2. We use the notation fixed previously and the letters C and K shall denote positive constants that might depend on the parameters \(R,\lambda ,\alpha ,T\), but not on the coefficients v neither on the solutions u or the data f and \(u_0\) of (16), unless otherwise stated. In addition, K shall depend continuously on T.

Let us recall that the fundamental solution \({\varGamma }\equiv {\varGamma }_[v]\) is given by (see e.g. [7] or [9])

$$\begin{aligned} {\varGamma }(x,t,\xi ,\tau )= Z(x,t,\xi ,\tau )+\int _\tau ^t\int _{\mathbb {R}}Z(x,t,y,\sigma )\phi (y,\sigma ,\xi ,\tau )dyd\sigma \,, \end{aligned}$$
(37)

where \((x,t),\,(\xi ,\tau )\in {\varOmega }_T\), \(t>\tau \), the function \(Z(x,t,\xi ,\tau )\), as a function (xt), is the fundamental solution of the heat equation \(\frac{\partial u}{\partial t}-a(\xi ,\tau )\frac{\partial ^2 u}{\partial x^2}=0\), i.e.

$$\begin{aligned} Z(x,t,\xi ,\tau )=\frac{1}{(4\pi a(\xi ,\tau )(t-\tau ))^\frac{1}{2}}\text{ e }^{-\frac{(x-\xi )^2}{4a(\xi ,\tau )(t-\tau )}}, \end{aligned}$$
(38)

for each fixed \((\xi ,\tau )\in {\varOmega }_T\), and

$$\begin{aligned} \phi (x,t,\xi ,\tau )=\sum ^{\infty }_{m=1}(-\,1)^m(\mathcal {L}Z)_m(x,t,\xi ,\tau ), \end{aligned}$$
(39)

where \((\mathcal {L}Z)_1=\mathcal {L}Z=(a(\xi ,\tau )-a(x,t))\frac{\partial ^2 Z}{\partial x^2}+b\frac{\partial Z}{\partial x}+cZ\) and, for \(m\ge 1\),

$$\begin{aligned} (\mathcal {L}Z)_{m+1}(x,t,\xi ,\tau )= \int _{\tau }^t\int _{\mathbb {R}}[\mathcal {L}Z(x,t,y,\sigma )](\mathcal {L}Z)_m(y,\sigma ,\xi ,\tau )dyd\sigma . \end{aligned}$$
(40)

We use very often the estimate

$$\begin{aligned} |D_t^rD_x^s{\varGamma }(x,t,\xi ,\tau )|\le \frac{K}{(t-\tau )^{\frac{1+2r+s}{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }}, \end{aligned}$$
(41)

which holds for all \(r,s\in \mathbb {Z}_{+}\) such that \(2r+s\le 2\).

In the sequel we shall write \(Z=Z_[v]\) and \(\phi =\phi _[v]\). Then we have the following lemmas.

Lemma 7

Given \(v=(a,b,c),\overline{v}=(\overline{a},\overline{b},\overline{c})\in B(R,\lambda ,\alpha )\), the following estimate is true.

$$\begin{aligned} |\left( D_x^sZ_{[v]}-D_x^sZ_{[\overline{v}]}\right) (x,t,\xi ,\tau )|\le K{\Vert a-\overline{a}\Vert }_\infty \frac{1}{(t-\tau )^ {\frac{s+1}{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{(t-\tau )}}, \end{aligned}$$

for \(s=0,1,2\), where \(C<1/(4R)\) and \(K=K(R,\lambda )\).

Proof

Since \(Z_{[v]}(x,t,\xi ,\tau )=\frac{1}{(4\pi (t-\tau ))^{\frac{1}{2}}}\text{ e }^{-\frac{(x-\xi )^2}{4a(\xi ,\tau )(t-\tau )}}\) and its derivatives on x depends on the coefficient a of \(\mathcal {L}_{[v]}\), but not depends on the other coefficients b and c, computing the derivative of \(D_x^sZ_{[v]}\) with respect to a, we find \(|D_aD_x^sZ_{[v]}(x,t,\xi ,\tau )|\le \frac{K}{(t-\tau )^{\frac{s+1}{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{(t-\tau )}}\), for \(s=0,1,2\), and constants K and C as in statement of the lemma. Then the desired inequality follows by the Mean Value Theorem. \(\square \)

The lemma below will help to show the next one.

Lemma 8

Let A and \(\alpha \) be strictily positive numbers being \(\alpha \le 1\), and let \(\gamma \) denote the gamma function, i.e. \(\gamma (x):=\int _0^\infty t^{x-1}\text{ e }^{-t}dt\). Then the series \(\sum _{m=1}^\infty {mA^m}/{\gamma (\frac{m\alpha }{2})}\) is convergent.

Proof

We begin by recalling the relation \(\frac{\gamma (x)\gamma (y)}{\gamma (x+y)}=\beta (x,y)\) between the gamma function \(\gamma \) and the beta function, \(\beta (x,y)=\int _0^1t^{x-1}(1-t)^{y-1}dt\) (see [13, p.41]). Denoting the general term of the given series by \(a_m\), and using the above relation, we obtain

$$\begin{aligned} \lim _{m\rightarrow \infty }\frac{a_{m+1}}{a_m}= A\lim _{m\rightarrow \infty }\frac{\beta \left( \frac{m\alpha }{2},\frac{\alpha }{2}\right) }{\gamma \left( \frac{\alpha }{2}\right) } =A\lim _{m\rightarrow \infty }\frac{1}{\gamma \left( \frac{\alpha }{2}\right) }\int _0^1t^{\frac{m\alpha }{2}-1}(1-t)^{ \frac{\alpha }{2}-1}dt=0. \end{aligned}$$

Therefore, the result follows. \(\square \)

Lemma 9

Let \(\beta \in [0,1]\) and \(\gamma \in (0,\alpha )\). If \(v,\overline{v}\in B(R,\lambda ,\alpha )\) then

$$\begin{aligned} |(\phi _{[v]}-\phi _{[\overline{v}]})(x,t,\xi ,\tau )|\le \frac{K\Vert v-\overline{v}\Vert _{\alpha ,\frac{\alpha }{2}}}{(t-\tau )^{\frac{3-\alpha }{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }} \end{aligned}$$
(42)

and

$$\begin{aligned}&|(\phi _{[v]}(x,t,\xi ,\tau )-\phi _{[\overline{v}]}(x,t,\xi ,\tau ))- (\phi _{[v]}(y,t,\xi ,\tau )-\phi _{[\overline{v}]}(y,t,\xi ,\tau ))| \nonumber \\&\qquad \le \frac{K\Vert v-\overline{v}\Vert ^\beta _{\alpha ,\frac{\alpha }{2}}|x-y|^{\gamma (1-\beta )}}{(t-\tau )^ {\frac{3-(\alpha -\gamma (1-\beta ))}{2}}}\left( \text{ e }^{- C\frac{(x-\xi )^2}{t-\tau }}+ \text{ e }^{- C\frac{(y-\xi )^2}{t-\tau }}\right) , \end{aligned}$$
(43)

where \(C<\frac{1}{4R}\) and \(K=K(R,\lambda ,\alpha ,T)\).

Proof

The proof of (42) follows from the following inequality,

$$\begin{aligned}&|({(\mathcal {L}Z_{[v]})}_m-{(\mathcal {L}Z_{[\overline{v}]})}_m)(x,t,\xi ,\tau )| \end{aligned}$$
(44)
$$\begin{aligned}&\quad \le mK^m\left( \frac{\pi }{C}\right) ^{\frac{m-1}{2}}\Vert v-\overline{v}\Vert _{\alpha ,\frac{\alpha }{2}} \frac{g(\frac{\alpha }{2})^m}{g(\frac{m\alpha }{2})}\frac{1}{{(t-\tau )}^{\frac{3-m\alpha }{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }}, \end{aligned}$$
(45)

where, for simplicity, we set \(\mathcal {L}\equiv \mathcal {L}_{[v]}\), and g denotes the gamma function; see Lemma 8. Inequality (44) can be proved by induction on m, we skip the proof. \(\square \)

Lemma 10

Let \(v,\overline{v}\in B(R,\lambda ,\alpha )\), \(\beta \in (0,1)\), \(\gamma \in (0,\alpha )\), and \({\varGamma }_{[v]}\). Then we have the following estimates:

$$\begin{aligned} |(D_x^s{\varGamma }_{[v]}-D_x^s{\varGamma }_{[\overline{v}]})(x,t,\xi ,\tau )|\le \frac{K\Vert v-\overline{v}\Vert _{\alpha ,\frac{\alpha }{2}}}{(t-\tau )^{\frac{s+1}{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }},\quad s=0,1, \end{aligned}$$
(46)
$$\begin{aligned}&|\left( \partial _{xx}{\varGamma }_{[v]}-\partial _{xx}{\varGamma }_{[\overline{v}]}\right) (x,t,\xi ,\tau )| \le K\left( \Vert v-\overline{v}\Vert _{\alpha ,\frac{\alpha }{2}}+\Vert v-\overline{v}\Vert ^\beta _{\alpha ,\frac{\alpha }{2}}\right) \nonumber \\&\qquad \cdot \, \left( \frac{1}{|x-\xi |^{1-(\alpha -\gamma (1-\beta ))}(t-\tau )^{1-\frac{\gamma (1-\beta )}{2}}} +\frac{1}{(t-\tau )^{\frac{3}{2}}}\right) \text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }} \end{aligned}$$
(47)

and

$$\begin{aligned}&|(\partial _{t}{\varGamma }_{[v]}-\partial _{t}{\varGamma }_{[\overline{v}]})(x,t,\xi ,\tau )| \le K\left( \Vert v-\overline{v}\Vert _{\alpha ,\frac{\alpha }{2}}+\Vert v-\overline{v}\Vert ^\beta _{\alpha ,\frac{\alpha }{2}}\right) \nonumber \\&\quad \cdot \, \left( \frac{1}{|x-\xi |^{1-(\alpha -\gamma (1-\beta ))}(t-\tau )^{1-\frac{\gamma (1-\beta )}{2}}} +\frac{1}{(t-\tau )^{\frac{3}{2}}}\right) \text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }}, \end{aligned}$$
(48)

where \(C<\frac{1}{4R}\) and \(K=K(R,\lambda ,\alpha ,T)\).

Proof

The proofs of inequalities (46) and (47) follow from Lemmas 7, 8 and 9, and the proof of inequality (48) follows from (46) and (47). Here, we omit details of the proofs. \(\square \)

Next, we prove the Proposition 1.

Proof of Proposition 1

Writing

$$\begin{aligned} (u-\overline{u})(x,t)&=\int _\mathbb {R}{\varGamma }_{[v]}(x,t,\xi ,0)u_0(\xi )-{\varGamma }_{[\overline{v}]}(x,t,\xi ,0)\overline{u}_0(\xi )\,d\xi \nonumber \\&\quad + \int _0^t\int _\mathbb {R}{\varGamma }_{[v]}(x,t,\xi ,\tau )f(\xi ,\tau )-{\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )\overline{f}(\xi ,\tau )\,d\xi \,d\tau \\&\equiv V(x,t)+W(x,t), \end{aligned}$$

by standard estimates on the fundamental solutions, we obtain

$$\begin{aligned} |V(x,t)|&\le \int _\mathbb {R}|{\varGamma }_{[v]}(x,t,\xi ,0)u_0(\xi )-{\varGamma }_{[\overline{v}]}(x,t,\xi ,0)\overline{u}_0(\xi )|\,d\xi \nonumber \\&\le \int _\mathbb {R}|({\varGamma }_{[v]}-{\varGamma }_{[\overline{v}]})(x,t,\xi ,0)u_0(\xi )|+ |{\varGamma }_{[\overline{v}]}(x,t,\xi ,0)(u_0(\xi )-\overline{u}_0(\xi ))|\,d\xi \nonumber \\&\le \int _\mathbb {R}\frac{K\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}}{t^{\frac{1}{2}}}\text{ e }^ {-C\frac{(x-\xi )^2}{t}}\Vert u_0\Vert _\infty +\frac{K}{t^{\frac{1}{2}}}\text{ e }^ {-C\frac{(x-\xi )^2}{t}}\Vert u_0-\overline{u}_0\Vert _\infty \,d\xi \nonumber \\&\le K\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+ \Vert u_0-\overline{u}_0\Vert _\infty \right) , \end{aligned}$$
(49)

where \(K=K(R,\lambda ,T,\Vert u_0\Vert _\infty )\). In addition, using that the integral of derivatives of the fundamental solution is null, we can write

$$\begin{aligned} \partial _xV(x,t)&= \int _\mathbb {R}\partial _x{\varGamma }_{[v]}(x,t,\xi ,0)u_0(\xi )-\partial _x{\varGamma }_{[\overline{v}]}(x,t,\xi ,0)\overline{u}_0(\xi )\,d\xi \\&=\int _\mathbb {R}(\partial _x{\varGamma }_{[v]}-\partial _x{\varGamma }_{[\overline{v}]})(x,t,\xi ,0)(u_0(\xi )-u_0(x))\,d\xi \\&\quad +\int \partial _x{\varGamma }_{[\overline{v}]}(x,t,\xi ,0)[(u_0(\xi )-\overline{u}_0(\xi ))-(u_0(x)-\overline{u}_0(x))]\,d\xi , \end{aligned}$$

so, by Lemma 10 and estimate (41) and using that \(\frac{|x-\xi |}{t} \text{ e }^{-C\frac{(x-\xi )^2}{t}}= \frac{1}{t^{1/2}} (\frac{|x-\xi |}{t^{1/2}} \text{ e }^{-(C/2)\frac{(x-\xi )^2}{t}})\text{ e }^{-(C/2)\frac{(x-\xi )^2}{t}} \le \text{ const }\). \(\frac{1}{t^{1/2}}\text{ e }^{-(C/2)\frac{(x-\xi )^2}{t}}\), we obtain

$$\begin{aligned}&|\partial _xV(x,t)| \nonumber \\&\qquad \le \int _\mathbb {R}\left( \frac{K\Vert v-\overline{v}\Vert _{1,\frac{1}{2}} \Vert u_0\Vert _1|x-\xi |}{t}+ \frac{K\Vert u_0-\overline{u}_0\Vert _1|x-\xi |}{t}\right) \text{ e }^{-C\frac{(x-\xi )^2}{t}}\,d\xi \nonumber \\&\qquad \le \int _\mathbb {R}\frac{K\Vert u_0\Vert _1\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}}{t^{\frac{1}{2}}}+ \frac{K\Vert u_0-\overline{u}_0\Vert _1}{t^{\frac{1}{2}}})\text{ e }^{-C\frac{(x-\xi )^2}{t}}\,d\xi \nonumber \\&\qquad \le K\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert u_0-\overline{u}_0\Vert _1\right) , \end{aligned}$$
(50)

with \(K=K(R,\lambda ,T,\Vert u_0\Vert _1)\). To obtain the Hölder continuity with respect to t, we write

$$\begin{aligned}&V(x,t)-V(x,t')\\&\quad =\int _\mathbb {R}({\varGamma }_{[v]}(x,t,\xi ,0)-{\varGamma }_{[v]}(x,t',\xi ,0))u_0(\xi )\,d\xi \\&\qquad \int _\mathbb {R}-({\varGamma }_{[\overline{v}]}(x,t,\xi ,0)- {\varGamma }_{[\overline{v}]}(x,t',\xi ,0))\overline{u}_0(\xi )\,d\xi \\&\quad =\int _\mathbb {R}\int _{t'}^t\partial _t{\varGamma }_{[v]}(x,s,\xi ,0)u_0(\xi )- \partial _t{\varGamma }_{[\overline{v}]}(x,s,\xi ,0)\overline{u}_0(\xi ) \,ds\,d\xi \\&\quad =\int _{t'}^t\int _\mathbb {R}(\partial _t{\varGamma }_{[v]}-\partial _t{\varGamma }_{[\overline{v}]})(x,s,\xi ,0)u_0(\xi )+ \partial _t{\varGamma }_{[\overline{v}]}(x,s,\xi ,0)(u_0-\overline{u}_0)(\xi ) \,d\xi \,ds\\&\quad =\int _{t'}^t\int _\mathbb {R}(\partial _t{\varGamma }_{[v]}-\partial _t{\varGamma }_{[\overline{v}]})(x,s,\xi ,0)(u_0(\xi )-u_0(x)) \,d\xi \,ds\\&\quad \quad +\,\int _{t'}^t\int _\mathbb {R}\partial _t{\varGamma }_{[\overline{v}]}(x,s,\xi ,0)[(u_0-\overline{u}_0)(\xi )-(u_0-\overline{u}_0)(x)] \,d\xi \,ds. \end{aligned}$$

Therefore, from Lemma 10 and estimate (41), we obtain

$$\begin{aligned}&|V(x,t)-V(x,t')| \nonumber \\&\quad \le \int _{t'}^t\int _\mathbb {R}|\partial _t{\varGamma }_{[v]}-\partial _t{\varGamma }_{[\overline{v}]})(x,s,\xi ,0)||u_0(\xi )-u_0(x)| \,d\xi \,ds \nonumber \\&\quad \quad +\int _{t'}^t\int _\mathbb {R}|\partial _t{\varGamma }_{[\overline{v}]}(x,s,\xi ,0)||(u_0-\overline{u}_0)(\xi )-(u_0-\overline{u}_0)(x)| \,d\xi \,ds \nonumber \\&\quad \le \int _{t'}^t\int _\mathbb {R}K\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+ \Vert v-\overline{v}\Vert ^\beta _{1,\frac{1}{2}}\right) \Vert u_0\Vert _1|x-\xi | \nonumber \\&\quad \quad \left( \frac{1}{|x-\xi |^{\gamma (1-\beta )}s^{\frac{2-\gamma (1-\beta )}{2}}}+\frac{1}{s^{\frac{3}{2}}}\right) \text{ e }^{-C\frac{(x-\xi )^2}{s}}\,d\xi \,ds \nonumber \\&\quad \quad +\int _{t'}^t\int _\mathbb {R}\frac{K\Vert u_0-\overline{u}_0\Vert _1|x-\xi |}{s^{\frac{3}{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{s}}\,d\xi \,ds \nonumber \\&\quad \le \int _{t'}^t\int _\mathbb {R}K\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+ \Vert v-\overline{v}\Vert ^\beta _{1,\frac{1}{2}}\right) \Vert u_0\Vert _1\left( \frac{T^{\frac{1}{2}}}{s}+\frac{1}{s}\right) \text{ e }^{-C\frac{(x-\xi )^2}{s}}\,d\xi \,ds \nonumber \\&\quad \quad +\int _{t'}^t\int _\mathbb {R}\frac{K\Vert u_0-\overline{u}_0\Vert _1}{s}\text{ e }^{-C\frac{(x-\xi )^2}{s}}\,d\xi \,ds\nonumber \\&\quad \le K\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert ^\beta _{1,\frac{1}{2}}+ \Vert u_0-\overline{u}_0\Vert _1\right) \int _{t'}^t\int _\mathbb {R}\frac{1}{s}\text{ e }^{-C\frac{(x-\xi )^2}{s}}\,d\xi \,ds \nonumber \\&\quad \le K\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert ^\beta _{1,\frac{1}{2}}+ \Vert u_0-\overline{u}_0\Vert _1\right) \int _{t'}^t\frac{1}{s^{\frac{1}{2}}}\,ds \nonumber \\&\quad \le K\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert ^\beta _{1,\frac{1}{2}}+ \Vert u_0-\overline{u}_0\Vert _1\right) (t-t')^{\frac{1}{2}}, \end{aligned}$$
(51)

where \(K=K(R,\lambda ,T,\Vert u_0\Vert _1)\). From estimates (49), (50), and (51), we have

$$\begin{aligned} \Vert V\Vert _{1,\frac{1}{2}}\le K(R,\lambda ,T,\Vert u_0\Vert _1)\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+ \Vert v-\overline{v}\Vert ^\beta _{1,\frac{1}{2}}+\Vert u_0-\overline{u}_0\Vert _1\right) , \end{aligned}$$
(52)

with a new K. Similarly, we can estimate W:

$$\begin{aligned} W(x,t)&=\int _0^t\int _\mathbb {R}{\varGamma }_{[v]}(x,t,\xi ,\tau )f(\xi ,\tau )- {\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )\overline{f}(\xi ,\tau ) \,d\xi \,d\tau \\&=\int _0^t\int _\mathbb {R}({\varGamma }_{[v]}-{\varGamma }_{[\overline{v}]})(x,t,\xi ,\tau )f(\xi ,\tau )\\&\quad +\, {\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )(f-\overline{f})(\xi ,\tau ) \,d\xi \,d\tau . \end{aligned}$$

Hence, using Lemma 10 and (41), we have

$$\begin{aligned} |W(x,t)|&\le \int _0^t\int _\mathbb {R}|({\varGamma }_{[v]}-{\varGamma }_{[\overline{v}]})(x,t,\xi ,\tau )f(\xi ,\tau )|\, d\xi \, d\tau \nonumber \\&\quad +\int _0^t\int _\mathbb {R}|{\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )(f-\overline{f})(\xi ,\tau )| \,d\xi \,d\tau \nonumber \\&\le \int _0^t\int _\mathbb {R}K(\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}\Vert f\Vert _\infty + \Vert f-\overline{f}\Vert _\infty )\frac{1}{(t-\tau )^{\frac{1}{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }}\,d\xi \,d\tau \nonumber \\&\le K(R,\lambda ,T)(\Vert f\Vert _\infty +1)T\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert f-\overline{f}\Vert _\infty \right) . \end{aligned}$$
(53)

In addition,

$$\begin{aligned} |\partial _xW(x,t)|&\le \int _0^t\int _\mathbb {R}|\left( \partial _x{\varGamma }_{[v]}-\partial _x{\varGamma }_{[\overline{v}]}\right) (x,t,\xi ,\tau )f(\xi ,\tau )| \nonumber \\&\quad +\int _0^t\int _\mathbb {R}|\partial _x{\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )(f-\overline{f})(\xi ,\tau )| \,d\xi \,d\tau \nonumber \\&\le \int _0^t\int _\mathbb {R}K\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}\Vert f\Vert _\infty + \Vert f-\overline{f}\Vert _\infty \right) \frac{1}{(t-\tau )}\text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }}\,d\xi \,d\tau \nonumber \\&\le K(R,\lambda ,T)(\Vert f\Vert _\infty +1)T^{\frac{1}{2}}\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert f-\overline{f}\Vert _\infty \right) . \end{aligned}$$
(54)

To prove the Hölder continuity with respect to t, we write

$$\begin{aligned} W(x,t)-W(x,t')&=\int _{0}^t\int _\mathbb {R}[({\varGamma }_{[v]}(x,t,\xi ,\tau )]f(\xi ,\tau )\,d\xi \,d\tau \ \ \ \ \ \ \ \ \ \ \\&\quad -\int _{0}^t\int _\mathbb {R}{\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )\overline{f}(\xi ,\tau ) \,d\xi \,d\tau \\&\quad -\int ^{t'}_0\int _\mathbb {R}[({\varGamma }_{[v]}(x,t',\xi ,\tau )]f(\xi ,\tau ) \\&\quad - {\varGamma }_{[\overline{v}]}(x,t,\xi ',\tau )\overline{f}(\xi ,\tau ) \,d\xi \,d\tau \\&=\int _{t'}^t\int _\mathbb {R}({\varGamma }_{[v]}(x,t,\xi ,\tau )]f(\xi ,\tau ) \\&\quad - {\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )\overline{f}(\xi ,\tau )) \,d\xi \,d\tau \\&\quad +\int _0^{t'}\int _\mathbb {R}({\varGamma }_{[v]}(x,t,\xi ,\tau )- {\varGamma }_{[v]}(x,t',\xi ,\tau ))f(\xi ,\tau )\,d\xi \,d\tau \\&\quad -\int _0^{t'}\int _\mathbb {R}({\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )-{\varGamma }_{[\overline{v}]}(x,t',\xi ,\tau ))\overline{f}(\xi ,\tau ) \,d\xi \,d\tau \\&= W_1+W_2+W_3 \end{aligned}$$

where, for and \(0<\epsilon <t'\) arbitrary, we set

$$\begin{aligned} W_1=&\int _{t'}^t\int _\mathbb {R}(({\varGamma }_{[v]}- {\varGamma }_{[\overline{v}]})(x,t,\xi ,\tau )]f(\xi ,\tau )+ {\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )(f-\overline{f})(\xi ,\tau )) \,d\xi \,d\tau \\ W_2=&\int _{t'-\epsilon }^{t'}\int _\mathbb {R}\left( {\varGamma }_{[v]}(x,t,\xi ,\tau )-{\varGamma }_{[v]}(x,t',\xi ,\tau )\right) f(\xi ,\tau ) \,d\xi \,d\tau \\&-\int _{t'-\epsilon }^{t'}\int _\mathbb {R}\left( {\varGamma }_{[\overline{v}]}(x,t,\xi ,\tau )-{\varGamma }_{[\overline{v}]}(x,t',\xi ,\tau )\right) \overline{f}(\xi ,\tau )] \,d\xi \,d\tau \end{aligned}$$

and

$$\begin{aligned} W_3=&\int _0^{t'-\epsilon }\int _\mathbb {R}\int _{t'}^t\left[ \partial _t{\varGamma }_{[v]}(x,\xi ,s,\tau )f(\xi ,\tau ) \,ds\,d\xi \,d\tau \right. \\&\left. -\int _0^{t'-\epsilon }\int _\mathbb {R}\partial _t{\varGamma }_{[\overline{v}]}(x,\xi ,s,\tau )\overline{f}(\xi ,\tau )\right] \,ds\,d\xi \,d\tau \, . \end{aligned}$$

Using Lemma 10, we estimate

$$\begin{aligned} |W_1|&\le \int _{t'}^t\int _\mathbb {R}(K\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}\Vert f\Vert _\infty +K\Vert f- \overline{f}\Vert _\infty )\frac{\text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }}}{(t-\tau )^{\frac{1}{2}}}\,d\xi \,d\tau \nonumber \\&\le K(R,\lambda ,T)(\Vert f\Vert _\infty +1)T^{\frac{1}{2}}\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert f- \overline{f}\Vert _\infty \right) (t-t')^{\frac{1}{2}}, \end{aligned}$$
(55)

and

$$\begin{aligned} |W_2|&\le \int _{t'-\epsilon }^{t'}\int _\mathbb {R}\left( \frac{K}{(t-\tau )^{\frac{1}{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{t-\tau }}+ \frac{K}{(t'-\tau )^{\frac{1}{2}}}\text{ e }^ {-C\frac{(x-\xi )^2}{t'-\tau }}\right) \nonumber \\&\quad (\Vert f\Vert _\infty +\Vert \overline{f}\Vert _\infty ) \,d\xi \,d\tau \nonumber \\&\le K(\Vert f\Vert _\infty +\Vert \overline{f}\Vert _\infty )\epsilon . \end{aligned}$$
(56)

The term \(W_3\) can be estimated as follows:

$$\begin{aligned} W_3&=\int _0^{t'-\epsilon }\int _\mathbb {R}\int _{t'}^t\left[ \partial _t{\varGamma }_{[v]}(x,\xi ,s,\tau )f(\xi ,\tau )- \partial _t{\varGamma }_{[\overline{v}]}(x,\xi ,s,\tau )\overline{f}(\xi ,\tau )\right] \,ds\,d\xi \,d\tau \\&=\int _0^{t'-\epsilon }\int _{t'}^t\int _\mathbb {R}\left[ (\partial _t{\varGamma }_{[v]}- \partial _t{\varGamma }_{[\overline{v}]})(x,\xi ,s,\tau )(f(\xi ,\tau )-f(x,\tau ))\right. \\&\quad \left. + \,\partial _t{\varGamma }_{[\overline{v}]}(x,\xi ,s,\tau )((f-\overline{f})(\xi ,\tau )- (f-\overline{f})(x,\tau ))\right] \,d\xi \,ds \,d\tau . \end{aligned}$$

Now, applying Lemma 10 again, and writing \(K_1=K(\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^\beta )\Vert f\Vert _{1,\frac{1}{2}}\), it follows that \(|W_3|\)

$$\begin{aligned}&\le \int _0^{t'-\epsilon }\int _{t'}^t\int _\mathbb {R}K_1\left( \frac{1}{|x-\xi |^{\gamma (1-\beta )}(s-\tau )^ {\frac{2-\gamma (1-\beta )}{2}}}+ \frac{1}{(s-\tau )^{\frac{3}{2}}}\right) \text{ e }^{-C\frac{(x-\xi )^2}{s-\tau }}|x-\xi | \nonumber \\&\quad +\frac{K}{(s-\tau )^{\frac{3}{2}}}\text{ e }^{-C\frac{(x-\xi )^2}{s-\tau }} \Vert f-\overline{f}\Vert _{1,\frac{1}{2}}|x-\xi |\,d\xi \,ds \,d\tau \nonumber \\&\le K\left( 1+\Vert f\Vert _{1,\frac{1}{2}}\right) \left[ \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^\beta \right. \nonumber \\&\quad \left. +\Vert f-\overline{f}\Vert _{1,\frac{1}{2}}\right] \int _0^{t'-\epsilon }\int _{t'}^t\int _\mathbb {R}\left( \frac{|x-\xi |^ {1-\gamma (1-\beta )}}{(s-\tau )^{\frac{2-\gamma (1-\beta )}{2}}}+\frac{|x-\xi |}{(s-\tau )^{\frac{3}{2}}}\right) \text{ e }^ {-C\frac{(x-\xi )^2}{s-\tau }}\,d\xi \,ds \,d\tau \nonumber \\&\le K\left( 1+\Vert f\Vert _{1,\frac{1}{2}}\right) \left[ \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^\beta \right. \nonumber \\&\quad \left. +\Vert f-\overline{f}\Vert _{1,\frac{1}{2}}\right] \int _0^{t'-\epsilon }\int _{t'}^t\int _\mathbb {R}\left( \frac{1}{(s-\tau )^{\frac{1}{2}}}+ \frac{1}{s-\tau }\right) \text{ e }^{-C\frac{(x-\xi )^2}{s-\tau }}\,d\xi \,ds \,d\tau \nonumber \\&\le K\left( 1+\Vert f\Vert _{1,\frac{1}{2}}\right) \left[ \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^\beta \right. \nonumber \\&\quad \left. +\Vert f-\overline{f}\Vert _{1,\frac{1}{2}}\right] \left( T^{\frac{1}{2}}+1\right) \int _0^{t'-\epsilon }\int _{t'}^t\int _\mathbb {R}\frac{1}{s-\tau }\text{ e }^ {-C\frac{(x-\xi )^2}{s-\tau }}\,d\xi \,ds \,d\tau \nonumber \\&\le K(1+\Vert f\Vert _{1,\frac{1}{2}})\left[ \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^ \beta +\Vert f-\overline{f}\Vert _{1,\frac{1}{2}}\right] \, \cdot \nonumber \\&\quad \cdot \, \int _0^{t'-\epsilon }\int _{t'}^t \frac{1}{(s-\tau )^{\frac{1}{2}}} \,ds \,d\tau \nonumber \\&\le K\left( 1+\Vert f\Vert _{1,\frac{1}{2}}\right) \left[ \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^\beta + \Vert f-\overline{f}\Vert _{1,\frac{1}{2}}\right] T(t-t')^{\frac{1}{2}}, \end{aligned}$$
(57)

where for the last inequality we used that (56) is true for all \(\epsilon \in (0,t')\). From (55), (56), and (57), we conclude that

$$\begin{aligned}&|W(x,t)-W(x,t')| \nonumber \\&\quad \le K\left( \Vert f\Vert _{1,\frac{1}{2}}+1\right) \left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^\beta + \Vert f-\overline{f}\Vert _{1,\frac{1}{2}}\right) \nonumber \\&\qquad T^{\frac{1}{2}}(t-t')^{\frac{1}{2}}, \end{aligned}$$
(58)

where \(K=K(R,\lambda ,T)\). It follows from (53), (54), and (58) that

$$\begin{aligned} \Vert W\Vert _{1,\frac{1}{2}}\le K(R,\lambda ,T)T^{\frac{1}{2}} \left( \Vert f\Vert _{1,\frac{1}{2}}+1\right) \left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+ \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^\beta +\Vert f-\overline{f}\Vert _{1,\frac{1}{2}}\right) .\nonumber \\ \end{aligned}$$
(59)

Finally, from (52) and (59), we have

$$\begin{aligned}&\Vert u-\overline{u}\Vert _{1,\frac{1}{2}}\le \ \Vert V\Vert _{1,\frac{1}{2}}+\Vert W\Vert _{1,\frac{1}{2}} \nonumber \\&\quad \le K\left( \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^\beta +\Vert u_0-\overline{u}_0\Vert _1 \right. \nonumber \\&\qquad \left. + T^{\frac{1}{2}}\left( \Vert f\Vert _{1,\frac{1}{2}}+1\right) \left( \Vert f-\overline{f}\Vert _{1,\frac{1}{2}}+\Vert v-\overline{v}\Vert _{1,\frac{1}{2}}+ \Vert v-\overline{v}\Vert _{1,\frac{1}{2}}^\beta \right) \right) , \end{aligned}$$
(60)

where \(K=K(R,\lambda ,T,\Vert u_0\Vert _1)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Mota, J.C., Santos, M.M. & Santos, R.A. The Cauchy problem for a combustion model in a porous medium with two layers. Monatsh Math 188, 131–162 (2019). https://doi.org/10.1007/s00605-017-1114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-017-1114-2

Keywords

Mathematics Subject Classification

Navigation