Skip to main content
Log in

The Hartogs extension problem for holomorphic parabolic and reductive geometries

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Every holomorphic effective parabolic or reductive geometry on a domain over a Stein manifold is the pullback of a unique such geometry on the envelope of holomorphy of the domain. We use this result to classify the Hopf manifolds which admit holomorphic reductive geometries, and to classify the Hopf manifolds which admit holomorphic parabolic geometries. Every Hopf manifold which admits a holomorphic parabolic geometry with a given model admits a flat one. We classify flat holomorphic parabolic geometries on Hopf manifolds. For every generalized flag manifold there is a Hopf manifold with a flat holomorphic parabolic geometry modelled on that generalized flag manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abate, M., Abbondandolo, A., Majer, P.: Stable manifolds for holomorphic automorphisms. J. Reine Angew. Math. 690, 217–247 (2014). MR 3200344

  2. Arnol\(\prime \)d, V.I.: Geometrical methods in the theory of ordinary differential equations. second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 250, Springer-Verlag, New York (1988) Translated from the Russian by Joseph Szücs [József M. Szűcs]. MR 947141 (89h:58049)

  3. Atiyah, M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181–207 (1957). MR 0086359 (19,172c)

  4. Biswas, I., McKay, B.: Holomorphic Cartan geometries and rational curves (2010). arXiv:1005.1472

  5. Bochner, S.: Compact groups of differentiable transformations. Ann. Math. 46(2), 372–381 (1945). MR 0013161

  6. Cartan, E.: Leçons sur la géométrie projective complexe. La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile. Leçons sur la théorie des espaces à connexion projective. Les Grands Classiques Gauthier-Villars. [Gauthier–Villars Great Classics], Éditions Jacques Gabay, Sceaux (1992). Reprint of the editions of 1931, 1937 and 1937. MR 1190006 (93i:01030)

  7. Dumitrescu, S., Guillot, A.: Quasihomogeneous analytic affine connections on surfaces. J. Topol. Anal. 5(4), 491–532 (2013). MR 3152213

  8. Hasegawa, K.: Deformations and diffeomorphism types of Hopf manifolds. Illinois J. Math. 37(4), 643–651 (1993). MR 1226788

  9. Hörmander, L.: An introduction to complex analysis in several variables. 3rd edn., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam (1990). MR 1045639 (91a:32001)

  10. Ivashkovich, S.: Extra extension properties of equidimensional holomorphic mappings: results and open questions. Mat. Stud. 30(2), 198–213 (2008). MR 2502929 (2010f:32006)

  11. Jahnke, P., Radloff, I.: Threefolds with holomorphic normal projective connections. Math. Ann. 329(3), 379–400 (2004). MR 2127983 (2005m:14068)

  12. Kato, M.: Compact quotients with positive algebraic dimensions of large domains in a complex projective 3-space. J. Math. Soc. Japan 62(4), 1317–1371 (2010). MR 2761899

  13. Klingler, B.: Structures affines et projectives sur les surfaces complexes. Ann. Inst. Fourier (Grenoble) 48(2), 441–477 (1998). MR 1625606 (99c:32038)

  14. Knapp, A.W.: Lie Groups Beyond an Introduction. 2nd edn. Progress in Mathematics, vol. 140, Birkhäuser Boston Inc., Boston, MA (2002). MR 1920389 (2003c:22001)

  15. Kodaira, K.: On the structure of compact complex analytic surfaces II. Am. J. Math. 88, 682–721 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mall D.: The cohomology of line bundles on Hopf manifolds. Osaka J. Math. 28(4),, 999–1015 (1991). MR 1152964 (93d:32045)

  17. Matsushima, Y., Morimoto, A.: Sur certains espaces fibrés holomorphes sur une variété de Stein. Bull. Soc. Math. France 88, 137–155 (1960). MR 0123739 (23 #A1061)

  18. McKay, B.: Holomorphic geometric structures on Kähler–Einstein manifolds. arXiv:1308.1613

  19. McKay, B.: Complete complex parabolic geometries. Int. Math. Res. Not (2006). Art. ID 86937, 34. MR 2264710 (2007m:53098)

  20. McKay, B.: Extension phenomena for holomorphic geometric structures. SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009). Paper 058, 45. MR 2529189

  21. McKay, B.: Holomorphic Cartan geometries on uniruled surfaces. C. R. Math. Acad. Sci. Paris 349(15–16), 893–896 (2011). MR 2835898

  22. McKay, B.: Holomorphic parabolic geometries and Calabi-Yau manifolds. SIGMA Symmetry Integrability Geom. Methods Appl. 7 (2011). Paper 090, 11. MR 2861186

  23. McKay, B.: Complex homogeneous surfaces. J. Lie Theory 25(2), 579–612 (2015). MR 3346074

  24. Mok, N.: Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds. Series in Pure Mathematics, vol 6, World Scientific Publishing Co. Inc., Teaneck, NJ (1989). MR 1081948 (92d:32046)

  25. Rosay, J.P., Rudin, W.: Holomorphic maps from\({\mathbb{C}}^n\). Trans. Am. Math. Soc. 310(1), 47–86 (1988). MR 929658

  26. Rossi, H.: On envelops of holomorphy. Comm. Pure Appl. Math. 16, 9–17 (1963). MR 0148940 (26 #6436)

  27. Sharpe, R.W.: Differential Geometry. Graduate Texts in Mathematics, vol 166, Springer-Verlag, New York (1997). Cartan’s generalization of Klein’s Erlangen program, With a foreword by S. S. Chern. MR 98m:53033

  28. Sharpe R.W.: An Introduction to Cartan Geometries. In: Proceedings of the 21st Winter School “Geometry and Physics” (Srní, 2001), no. 69, 2002, pp. 61–75. MR 2004f:53023

  29. Sternberg, S.: Local contractions and a theorem of Poincaré. Am. J. Math. 79, 809–824 (1957). MR 0096853

  30. Szaro, J.P.: Isotropy of semisimple group actions on manifolds with geometric structure. Am. J. Math. 120(1), 129–158 (1998). MR 1600276

  31. Ueno, K.: Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lecture Notes in Mathematics, vol. 439. Springer-Verlag, Berlin-New York (1975)

  32. Wolf, J.A.: Spaces of Constant Curvature. McGraw-Hill Book Co., New York-London-Sydney (1967). MR 0217740

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin McKay.

Additional information

Communicated by A. Constantin.

It is a pleasure to thank Sorin Dumitrescu and Filippo Bracci for helpful conversations on the problems solved in this paper, and for inviting me to the Laboratoire de Mathématiques J.A. Dieudonné at the University of Nice Sophia–Antipolis and to the University of Rome Tor Vergata where part of this work was carried out. This publication has emanated from activity conducted with the financial support of Science Foundation Ireland under the International Strategic Cooperation Award Grant Number SFI/13/ISCA/2844.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKay, B. The Hartogs extension problem for holomorphic parabolic and reductive geometries. Monatsh Math 181, 689–713 (2016). https://doi.org/10.1007/s00605-016-0955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0955-4

Keywords

Mathematics Subject Classification

Navigation