Skip to main content

Advertisement

Log in

Surface tension effects in the equatorial ocean dynamics

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

By investigating a viscous boundary value problem, we show that for capillary waves the level of the thermocline marking the interface of the strongly stratified equatorial flows, decreases as the strength of the wind above the ocean surface increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourassa, M.A., Vincent, D.G., Wood, W.L.: A flux parameterization including the effects of capillary waves and sea state. J. Atmos. Sci. 56, 1123–1139 (1999)

    Article  Google Scholar 

  2. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  Google Scholar 

  3. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. 117, C05029 (2012)

    Article  Google Scholar 

  4. Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    Article  Google Scholar 

  5. Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44(2), 781–789 (2014)

    Article  Google Scholar 

  6. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109(4), 311–358 (2015)

    Article  MathSciNet  Google Scholar 

  7. Constantin, A., Ivanov, R.: A Hamiltonian approach to wave-current interactions in two-layer fluids. Phys. Fluids 27, 086603 (2015)

    Article  MATH  Google Scholar 

  8. Cronin, M.F., Kessler, W.S.: Near-surface shear flow in the tropical Pacific cold tongue front. J. Phys. Oceanogr. 39, 1200–1215 (2009)

    Article  Google Scholar 

  9. Cushman-Roisin, B., Beckers, J.-M.: Introduction to Geophyiscal Fluid Dynamics: Physical and Numerical Aspects. Academic Press, Waltham (2011)

    MATH  Google Scholar 

  10. Davies, A.M.: Modelling storm surge current structure. In: Dyke, P.P.G., Moscardini, A.O., Robson, E.H. (ed) Offshore and Coastal Modelling, pp. 55–81. Wiley: New York (2013)

  11. Fedorov, A.V., Brown, J.N.: Equatorial waves. In: Steele, J. (ed.) Encyclopedia of Ocean Sciences, pp. 3679–3695. Academic Press, New York (2009)

  12. Friedlander S, Serre D, pp. 201–329. North-Holland, Amsterdam (2007)

  13. García-Nava, H., Ocampo-Torres, F.J., Osuna, P., Donelan, M.A.: Wind stress in the presence of swell under moderate to strong conditions. J. Geophys. Res. 114, C12008 (2009). doi:10.1029/2009JC005389

    Article  Google Scholar 

  14. Genoud, F., Henry, D.: Instability of equatorial water waves with an underlying current. J. Math. Fluid Mech. 16(4), 661–667 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gerkema, T., Zimmerman, J.T.F., Maas, L.R.M., van Haren, H.: Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46, 1–33 (2004)

    Google Scholar 

  16. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B/Fluids 38, 18–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Henry, D., Hsu, H.-C.: Instability of equatorial water waves in the \(f\)-plane. Discrete Contin. Dyn. Syst. 35(3), 909–916 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henry, D., Matioc, A.-V.: On the existence of equatorial wind waves. Nonlinear Anal. TMA. 101, 113–123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(f\)-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kessler, W.S., McPhaden, M.J.: Oceanic equatorial waves and the 1991–1993, El Niño. J. Clim. 8, 1757–1774 (1995)

    Article  Google Scholar 

  21. LeBlond, P.H., Mysak, L.A.: Waves in the Ocean. Elsevier, Amsterdam (1978)

    Google Scholar 

  22. Martin, C.I.: Dynamics of the thermocline in the equatorial region of the Pacific Ocean. J. Nonlinear Math. Phys. 22(4), 516–522 (2015)

    Article  MathSciNet  Google Scholar 

  23. Matioc, A.V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A Math. Theor. 45, 365501 (2012)

  24. Matioc, A.-V.: Exact geophysical waves in stratified fluids. Appl. Anal. 92(11), 2254–2261 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. McCreary, J.P.: Modeling equatorial ocean circulation. Ann. Rev. Fluid Mech. 17, 359–409 (1985)

    Article  MATH  Google Scholar 

  26. Proehl, J.A., McPhaden, M.J., Rothstein, L.M.: A numerical approach to equatorial oceanic wave-mean flow interactions. In: O’Brien, J.J. (ed.) Advanced Physical Oceanographic Modelling. D. Reidel Publishing Company, Dordrecht (1986)

  27. Stommel, H.: Wind drift near the equator. Deep-Sea Res. 6, 298–302 (1960)

    Google Scholar 

  28. Wenegrat, J.O., McPhaden, M.J., Lien, R.C.: Wind stress and near-surface shear in the equatorial Atlantic Ocean. Geophys. Res. Lett. 41, 1226–1231 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank the referee for carefully reading the manuscript and for the suggestions made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calin Iulian Martin.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, C.I. Surface tension effects in the equatorial ocean dynamics. Monatsh Math 182, 675–682 (2017). https://doi.org/10.1007/s00605-015-0858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-015-0858-9

Keywords

Mathematics Subject Classification

Navigation