Skip to main content
Log in

Values of the Euler Function in Various Sequences

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract.

Let ϕ(n) and λ(n) denote the Euler and Carmichael functions, respectively. In this paper, we investigate the equation ϕ(n)r = λ(n)s, where rs ≥ 1 are fixed positive integers. We also study those positive integers n, not equal to a prime or twice a prime, such that ϕ(n) = p − 1 holds with some prime p, as well as those positive integers n such that the equation ϕ(n) = f(m) holds with some integer m, where f is a fixed polynomial with integer coefficients and degree degf > 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • WR Alford A Granville C Pomerance (1994) ArticleTitleThere are infinitely many Carmichael numbers. Ann Math 140 703–722

    Google Scholar 

  • RC Baker G Harman (1998) ArticleTitleShifted primes without large prime factors. Acta Arith 83 331–361

    Google Scholar 

  • Banks W, Friedlander JB, Pomerance C, Shparlinski IE (2004) Multiplicative structure of values of the Euler function. In: van der Poorten A, Stein A (eds) High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams. Fields Institute Communications, vol 41, pp 29–48. Providence, RI: Amer Math Soc

  • Banks W, Luca F, Shparlinski IE (2003) Arithmetic properties of ϕ(n)/λ(n) and the structure of the multiplicative group modulo n. Preprint

  • Banks W, Shparlinski IE (2004) Congruences and exponential sums with the Euler function. In: vander Poorten A, Stein A (eds) High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams. Fields Institute Communications, vol 41, pp 49–60. Providence, RI: Amer Math Soc

  • NL Bassily I Kátai M Wijsmuller (1999) ArticleTitleOn the prime power divisors of the iterates of the Euler-ϕ function. Publ Math Debrecen 55 17–32

    Google Scholar 

  • ER Canfield P Erdős C Pomerance (1983) ArticleTitleOn a problem of Oppenheim concerning “Factorisatio Numerorum”. J Number Theory 17 1–28 Occurrence Handle10.1016/0022-314X(83)90002-1

    Article  Google Scholar 

  • De Koninck JM, Luca F, Sankaranarayanan A (2005) Positive integers n whose Euler function is a power of the kernel function. Rocky Mountain J Math (to appear)

  • T Dence C Pomerance (1998) ArticleTitleEuler’s function in residue classes. Ramanujan J 2 7–20 Occurrence Handle10.1023/A:1009753405498

    Article  Google Scholar 

  • LE Dickson (1904) ArticleTitleA new extension of Dirichlet’s theorem on prime numbers. Mesenger Math 33 155–161

    Google Scholar 

  • P Erdős (1935) ArticleTitleOn the normal number of prime factors of p − 1 and some related problems concerning Euler’s ϕ-function. Quart J Math 6 205–213

    Google Scholar 

  • Erdős P, Granville A, Pomerance C, Spiro C (1990) On the normal behaviour of the iterates of some arithmetic functions. In: Berndt BC et al (eds) Analytic Number Theory, pp 165–204. Boston: Birkhäuser

  • P Erdős C Pomerance (1985) ArticleTitleOn the normal number of prime factors of ϕ(n). Rocky Mountain J Math 15 343–352

    Google Scholar 

  • P Erdős C Pomerance E Schmutz (1991) ArticleTitleCarmichael’s lambda function. Acta Arith 58 363–385

    Google Scholar 

  • K Ford (1998) ArticleTitleThe distribution of totients. Ramanujan J 2 67–151 Occurrence Handle10.1023/A:1009761909132

    Article  Google Scholar 

  • K Ford (1999) ArticleTitleThe number of solutions of ϕ(x) = m. Ann Math 150 283–311

    Google Scholar 

  • Ford K, Konyagin S, Pomerance C (1999) Residue classes free of values of Euler’s function. In: Győry K (ed) Proc Number Theory in Progress, pp 805–812. Berlin: W de Gruyter

  • Friedlander JB (1989) Shifted primes without large prime factors. In: Number Theory and Applications, pp 393–401. Kluwer, NATO ASI

  • Halberstam H, Richert H-E (1974) Sieve Methods. London: Academic Press

  • GH Hardy JE Littlewood (1923) ArticleTitleSome problems on partitio numerorum III. On the expression of a number as a sum of primes. Acta Math 44 1–70

    Google Scholar 

  • Hardy GH, Wright EM (1979) An Introduction to the Theory of Numbers Fifth Edn. Oxford: The Clarendon Press

  • DR Heath-Brown (1986) ArticleTitleArtin’s conjecture for primitive roots. Quart J Math 37 27–38

    Google Scholar 

  • A Hildebrand G Tenenbaum (1993) ArticleTitleIntegers without large prime factors. J Théorie Nombres Bordeaux 5 411–484

    Google Scholar 

  • F Luca C Pomerance (2002) ArticleTitleOn some problems of Makowski–Schinzel and Erdős concerning the arithmetical functions ϕ and σ. Colloq Math 92 111–130

    Google Scholar 

  • Luca F, Pomerance C (2003) On the average number of divisors of the Euler function. Preprint

  • H Maier C Pomerance (1988) ArticleTitleOn the number of distinct values of Euler’s ϕ-function. Acta Arith 49 263–275

    Google Scholar 

  • H Montgomery (1970) ArticleTitlePrimes in arithmetic progressions. Mich Math J 17 33–39 Occurrence Handle10.1307/mmj/1029000373

    Article  Google Scholar 

  • C Pomerance (1980) ArticleTitlePopular values of Euler’s function. Mathematika 27 84–89

    Google Scholar 

  • Pomerance C (1989) Two methods in elementary analytic number theory. In: Mollin RA (ed) Number Theory and Application, pp 135–161. Dordrecht: Kluwer

  • Pomerance C, Shparlinski IE (2002) Smooth orders and cryptographic applications. Lect Notes Comp Sci 2369: 338–348. Berlin Heidelberg New York: Springer

    Google Scholar 

  • Prachar K (1957) Primzahlverteilung. Berlin: Springer

  • Schinzel A, Sierpiński W (1959) Sur certaines hypothèses concernant les nombres premiers. Acta Arith 4: 185–208; Erratum, Acta Arith 5: 259

    Google Scholar 

  • Tenenbaum G (1995) Introduction to Analytic and Probabilistic Number Theory. Cambridge: Univ Press

  • S Wagon (1986) ArticleTitleCarmichael’s empirical theorem. Math Intelligencer 8 61–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banks, W., Ford, K., Luca, F. et al. Values of the Euler Function in Various Sequences. Mh Math 146, 1–19 (2005). https://doi.org/10.1007/s00605-005-0302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-005-0302-7

Navigation