Skip to main content
Log in

EPMA and Quantitative MCs+-SIMS of Metal-DLC Coating Materials

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract.

 Compositional characterization of metal-DLC (metal-containing diamond-like carbon) hard coatings is carried out by (WDS)-EPMA and MCs+-SIMS. EPMA enables accurate (± 5% relative) quantitative analysis including minor concentrations (0.1–10 at%) of N, O and Ar. Under conditions of “near-surface” EPMA (E0 < 10 keV) the influence of surface oxide films on “pure” metal standards may be a limiting factor in respect of accuracy. Depth profiling of sufficiently “thick” layered structures (film thickness ≥ 2 μm) is carried out by EPMA-line scans along mechanically prepared bevels. The depth resolution is about 0.2 μm. SIMS in the MCs+-mode enables high resolution (< 20 nm) depth profiling of metal-DLC layered structures including the determination of H (1–20 at%). MCs+-SIMS, i.e. employing Cs+ primary ions and monitoring MCs+ molecular secondary ions (M is the element of interest) is presented as a promising route towards sufficiently accurate (10–20%) SIMS-quantification. Matrix-independent relative sensitivity factors for MCs+-SIMS are derived from homogeneous coating materials defined by EPMA. EPMA proves to be also useful to detect problems related to SIMS of Ar in metal-DLC materials. The combination EPMA-SIMS is demonstrated as an effective analytical strategy for quality control in industrial production and to support the development of metal DLC layered structures with optimum tribological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willich, P., Wischmann, U. EPMA and Quantitative MCs+-SIMS of Metal-DLC Coating Materials. Mikrochim Acta 132, 419–427 (2000). https://doi.org/10.1007/s006040050089

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s006040050089

Navigation