Skip to main content

Advertisement

Log in

Development of a time-resolved immunochromatographic test strip for rapid and quantitative determination of retinol-binding protein 4 in urine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Urine retinol-binding protein 4 (RBP4) has recently been reported as a novel earlier biomarker of chronic kidney disease (CKD) which is a global public health problem with high morbidity and mortality. Accurate and rapid detection of urine RBP4 is essential for early monitor of impaired kidney function and prevention of CKD progression. In the present study, we developed a time-resolved fluorescence immunochromatographic test strip (TRFIS) for the quantitative and rapid detection of urine RBP4. This TRFIS possessed excellent linearity ranging from 0.024 to 12.50 ng/mL for the detection of urine RBP4, and displayed a good linearity (Y = 239,581 × X + 617,238, R2 = 0.9902), with the lowest visual detection limit of 0.049 ng/mL. This TRFIS allows for quantitative detection of urine RBP4 within 15 min and shows high specificity. The intra-batch coefficient of variation (CV) and the inter-batch CV were both < 8%, respectively. Additionally, this TRFIS was applied to detect RBP4 in the urine samples from healthy donors and patients with CKD, and the results of TRFIS could efficiently discern the patients with CKD from the healthy donors. The developed TRFIS has the characteristics of high sensitivity, high accuracy, and a wide linear range, and is suitable for rapid and quantitative determination of urine RBP4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets and materials used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wen D, Zheng Z, Surapaneni A et al (2022) Metabolite profiling of CKD progression in the chronic renal insufficiency cohort study [J]. JCI Insight 7(20):e161696

  2. Luyckx VA, Cherney DZI, Bello AK (2020) Preventing CKD in developed countries [J]. Kidney Int Rep 5(3):263–277

    Article  PubMed  Google Scholar 

  3. Swartling O, Rydell H, Stendahl M et al (2021) CKD progression and mortality among men and women: a nationwide study in Sweden [J]. Am J Kidney Dis 78(2):190–9e1

    Article  PubMed  Google Scholar 

  4. Morales Febles R, Marrero Miranda D, Cruz Perera CC et al (2024) Therapeutic exercise on metabolic and renal outcomes in patients with Chronic Kidney Disease (CKD): A narrative review [J]. Nephron 148:85–94

    Article  Google Scholar 

  5. Liyanage T, Toyama T, Hockham C et al (2022) Prevalence of chronic kidney disease in Asia: a systematic review and analysis [J]. BMJ Glob Health 7(1):e007525

  6. Tuot DS, Wong KK, Velasquez A et al (2019) CKD awareness in the general population: performance of CKD-specific questions [J]. Kidney Med 1(2):43–50

    Article  PubMed  PubMed Central  Google Scholar 

  7. Levey AS, Titan SM, Powe N et al (2020) Kidney disease, race, and GFR estimation [J]. Clin J Am Soc Nephrol 15(8):1203–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ebert N, Bevc S, Bökenkamp A et al (2021) Assessment of kidney function: clinical indications for measured GFR [J]. Clin Kidney J 14(8):1861–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perkins BA, Ficociello LH, Roshan B et al (2010) In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria [J]. Kidney Int 77(1):57–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tsai YL, Liu CW, Huang SF et al (2020) Urinary fatty acid and retinol binding protein-4 predict CKD progression in severe NAFLD patients with hypertension: 4-year study with clinical and experimental approaches [J]. Med (Baltim) 99(2):e18626

    Article  CAS  Google Scholar 

  11. Schiborn C, Weber D, Grune T et al (2022) Retinol and retinol binding protein 4 levels and cardiometabolic disease risk [J]. Circ Res 131(7):637–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, He X, Wen S et al (2022) Optimised expression and purification of RBP4 and preparation of anti-RBP4 monoclonal antibody [J]. FEBS Open Bio 12(2):430–442

    Article  CAS  PubMed  Google Scholar 

  13. Steinhoff JS, Lass A, Schupp M (2021) Biological functions of RBP4 and its relevance for Human diseases [J]. Front Physiol 12:659977

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fernando B, Alli-Shaik A, Hemage RKD et al (2019) Pilot study of renal urinary biomarkers for diagnosis of CKD of uncertain etiology [J]. Kidney Int Rep 4(10):1401–1411

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chu CH, Lam HC, Lee JK et al (2011) Elevated serum retinol-binding protein 4 concentrations are associated with chronic kidney disease but not with the higher carotid intima-media thickness in type 2 diabetic subjects [J]. Endocr J 58(10):841–847

    Article  CAS  PubMed  Google Scholar 

  16. Diaz-Riera E, García-Arguinzonis M, López L et al (2022) (2022) Urinary Proteomic Signature in Acute Decompensated Heart Failure: Advances into Molecular Pathophysiology [J]. Int J Mol Sci 23(4):2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Van Nynatten LR, Miller MR, Patel MA et al (2023) A novel multiplex biomarker panel for profiling human acute and chronic kidney disease [J]. Sci Rep 13(1):21210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernard AM, Vyskocil AA, Mahieu P et al (1987) Assessment of urinary retinol-binding protein as an index of proximal tubular injury [J]. Clin Chem 33(6):775–779

    Article  CAS  PubMed  Google Scholar 

  19. Gong W, Yang S, Zhang F et al (2021) A dual-quenched ECL immunosensor for ultrasensitive detection of retinol binding protein 4 based on luminol@AuPt/ZIF-67 and MnO(2)@CNTs [J]. J Nanobiotechnol 19(1):272

    Article  CAS  Google Scholar 

  20. Lee NS, Kim HS, Park SE et al (2018) Development of a mouse IgA monoclonal antibody-based enzyme-linked immunosorbent sandwich assay for the analyses of RBP4 [J]. Sci Rep 8(1):2578

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mitra P, Sharma P (2021) POCT in developing countries [J]. Ejifcc 32(2):195–199

    PubMed  PubMed Central  Google Scholar 

  22. Yin B, Wan X, Sohan A et al (2022) Microfluidics-based POCT for SARS-CoV-2 diagnostics [J]. Micromachines (Basel) 13(8):1238

    Article  PubMed  Google Scholar 

  23. Wang B, Moyano A, Duque JM et al (2022) Nanozyme-based lateral flow immunoassay (LFIA) for extracellular vesicle detection [J]. Biosensors (Basel) 12(7):490

    Article  PubMed  Google Scholar 

  24. Di Nardo F, Chiarello M, Cavalera S et al (2021) Ten years of lateral flow immunoassay technique applications: trends, challenges and future perspectives [J]. Sens (Basel) 21(15):5185

    Article  Google Scholar 

  25. Mirica AC, Stan D, Chelcea IC et al (2022) Latest trends in lateral flow immunoassay (LFIA) detection labels and conjugation process [J]. Front Bioeng Biotechnol 10:922772

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiao X, Peng T, Liang Z et al (2022) Lateral flow immunoassay based on time-resolved fluorescence microspheres for rapid and quantitative screening CA199 in human serum [J]. Int J Mol Sci 23(17):9991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li X, Chen X, Wu J et al (2021) Portable, rapid, and sensitive time-resolved fluorescence immunochromatography for on-site detection of dexamethasone in milk and pork [J]. Foods 10(6):1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Y, Mi Y, Li Y et al (2018) [Establishment of time-resolved fluorescence immunochromatographic assay for detection of carbohydrate antigen 19 – 9] [J]. Sheng Wu Gong Cheng Xue Bao 34(6):1012–1018

    CAS  PubMed  Google Scholar 

  29. Sun J, Wang L, Shao J et al (2021) One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN [J]. Anal Bioanal Chem 413(26):6489–6502

    Article  CAS  Google Scholar 

  30. Zhang J, Ruan X, Zan J (2014) Efficient generation of monoclonal antibodies against major structural proteins of rabies virus with suckling mouse brain antigen [J]. Monoclon Antib Immunodiagn Immunother 33(2):94–100

    Article  PubMed  Google Scholar 

  31. Liu J, Guo L, Wu A et al (2023) Immunochromatographic assay for the analysis of methomyl in cabbage and tomato [J]. Food Chem 409:135273

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Xu X, Liu L (2023) Development of a GNP-based lateral flow immunoassay for the detection of isoprothiolane in rice samples [J]. Food Chem 404(Pt A):134483

    Article  CAS  PubMed  Google Scholar 

  33. Parray HA, Shukla S, Samal S et al (2020) Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives [J]. Int Immunopharmacol 85:106639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang H, Zhou J, Wang D et al (2020) Development and optimized pairing of mouse monoclonal antibodies for detecting hemagglutinin in novel H7 subtype influenza viruses [J]. Sci China Life Sci 63(2):279–289

    Article  CAS  PubMed  Google Scholar 

  35. Geng Y, Long X, Zhang Y et al (2023) FTO-targeted siRNA delivery by MSC-derived exosomes synergistically alleviates dopaminergic neuronal death in Parkinson’s disease via m6A-dependent regulation of ATM mRNA [J]. J Transl Med 21(1):652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Yang X, Wang C et al (2024) A nanogap-enhanced SERS nanotag-based lateral flow assay for ultrasensitive and simultaneous monitoring of SARS-CoV-2 S and NP antigens [J]. Mikrochim Acta 191(2):104

    Article  CAS  PubMed  Google Scholar 

  37. Bian C, Zhang F, Wang F et al (2010) Development of retinol-binding protein 4 immunocolloidal gold fast test strip using high-sensitivity monoclonal antibodies generated by DNA immunization [J]. Acta Biochim Biophys Sin (Shanghai) 42(12):847–853

    Article  CAS  PubMed  Google Scholar 

  38. Manickavasagar B, McArdle AJ, Yadav P et al (2015) Hypervitaminosis A is prevalent in children with CKD and contributes to hypercalcemia [J]. Pediatr Nephrol 30(2):317–325

    Article  PubMed  Google Scholar 

  39. Nauwelaerts SJD, Roosens NHC, Bernard A et al (2021) Development of a multiplex mass spectrometry method for simultaneous quantification of urinary proteins related to respiratory health [J]. Sci Rep 11(1):10107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fei W, Chen L, Chen J et al (2017) RBP4 and THBS2 are serum biomarkers for diagnosis of colorectal cancer [J]. Oncotarget 8(54):92254–92264

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hong GB, Shao XF, Li JM et al (2022) Association of retinol binding protein 4 (RBP4) levels with hyperuricemia: a cross-sectional study in a Chinese population [J]. Front Endocrinol (Lausanne) 13:879755

    Article  PubMed  Google Scholar 

  42. Wang Q, Tian S, Xiao D (2022) Correlation of serum RBP4 level with oxidative stress and unstable carotid plaque in patients with cerebral infarction [J]. Transl Neurosci 13(1):354–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Q, Kiernan UA, Shi L et al (2013) Plasma retinol-binding protein 4 (RBP4) levels and risk of coronary heart disease: a prospective analysis among women in the nurses’ health study [J]. Circulation 127(19):1938–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koch A, Weiskirchen R, Sanson E et al (2010) Circulating retinol binding protein 4 in critically ill patients before specific treatment: prognostic impact and correlation with organ function, metabolism and inflammation [J]. Crit Care 14(5):R179

    Article  PubMed  PubMed Central  Google Scholar 

  45. Corbacıoglu SK, Cevik Y, Akinci E et al (2017) Value of plasma neutrophil gelatinase-associated lipocalin (NGAL) in distinguishing between acute kidney injury (AKI) and chronic kidney disease (CKD) [J]. Turk J Emerg Med 17(3):85–88

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zdziechowska M, Gluba-Brzózka A, Poliwczak AR et al (2020) Serum NGAL, KIM-1, IL-18, L-FABP: new biomarkers in the diagnostics of acute kidney injury (AKI) following invasive cardiology procedures [J]. Int Urol Nephrol 52(11):2135–2143

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schrezenmeier EV, Barasch J, Budde K et al (2017) Biomarkers in acute kidney injury - pathophysiological basis and clinical performance [J]. Acta Physiol (Oxf) 219(3):554–572

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Science and Technology Planning Project of Guangdong Province (No. 2023B1212060062) and the Shenzhen Science and Technology Program (No. JCYJ20220531092201003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, experimental design, data curation, and original draft preparation, WG, ZY, TL, LL, HL, YL, HZ, JZ, and JL; investigation and manuscript review, WG, ZY, TL, LL, HL, YL, YZ, YL, GMA, DSB, JC, JZ, and JL; supervision and funding acquisition, JZ and JL. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Jie Zan or Jiandong Lu.

Ethics declarations

Ethics approval

The study was approved by institutional ethics board of Shenzhen Traditional Chinese Medicine Hospital (K2022-001-02).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Yu, Z., Li, T. et al. Development of a time-resolved immunochromatographic test strip for rapid and quantitative determination of retinol-binding protein 4 in urine. Microchim Acta 191, 311 (2024). https://doi.org/10.1007/s00604-024-06381-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06381-6

Keywords

Navigation