Skip to main content
Log in

A dual-mode fluorometric/colorimetric sensor for sulfadimethoxine detection based on Prussian blue nanoparticles and carbon dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A dual-mode (colorimetric/fluorescence) nanoenzyme-linked immunosorbent assay (NLISA) was developed based on Au-Cu nanocubes generating Prussian blue nanoparticles (PBNPs). It is expected that this method can be used to detect the residues of sulfonamides in the field, and solve the problem of long analysis time and high cost of the traditional method. Sulfadimethoxine (SDM) was selected as the proof-of-concept target analyte. The Au-Cu nanocubes were linked to the aptamer by amide interaction, and the Au-Cu nanocubes, SDM and antibody were immobilized on a 96-well plate using the sandwich method. The assay generates PBNPs by oxidising the Cu shells on the Au-Cu nanocubes in the presence of hydrochloric acid, Fe3+ and K3[Fe (CN)6]. In this process, the copper shell undergoes oxidation to Cu2+ and subsequently Cu2 + further quenches the fluorescence of the carbon point. PBNPs exhibit peroxidase-like activity, oxidising 3,3’,5,5’-tetramethylbenzidine (TMB) to OX-TMB in the presence of H2O2, which alters the colorimetric signal. The dual-mode signals are directly proportional to the sulfadimethoxine concentration within the range 10− 3~10− 7 mg/mL. The limit of detection (LOD) of the assay is 0.023 ng/mL and 0.071 ng/mL for the fluorescent signal and the colorimetric signal, respectively. Moreover, the assay was successfully applied to determine sulfadimethoxine in silver carp, shrimp, and lamb samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zahra QUA, Luo Z, Ali R et al (2021) Advances in gold nanoparticles-based colorimetric aptasensors for the detection of antibiotics: an overview of the past decade. Nanomaterials 11:840. https://doi.org/10.3390/nano11040840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu Q, Shi T, Cheng Y et al (2021) Amplified photocurrent signal for fabricating photoelectrochemical sulfadimethoxine aptasensor based on carbon nitride photosensitization with visible/near-infrared light responsive zinc phthalocyanine. J Hazard Mater 406:124749. https://doi.org/10.1016/j.jhazmat.2020.124749

    Article  CAS  PubMed  Google Scholar 

  3. Zhou Q, Peng D, Wang Y et al (2014) A novel hapten and monoclonal-based enzyme-linked immunosorbent assay for sulfonamides in edible animal tissues. Food Chem 154:52–62. https://doi.org/10.1016/j.foodchem.2014.01.016

    Article  CAS  PubMed  Google Scholar 

  4. Chen X-X, Lin Z-Z, Hong C-Y et al (2020) A dichromatic label-free aptasensor for sulfadimethoxine detection in fish and water based on AuNPs color and fluorescent dyeing of double-stranded DNA with SYBR Green I. Food Chem 309:125712. https://doi.org/10.1016/j.foodchem.2019.125712

    Article  CAS  PubMed  Google Scholar 

  5. Commission Regulation E (2009) On pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin ;Title:L15/63,part all substances belong_ing to the sulfonamide group. Done at Brussels

  6. Agriculture PMO (2002) Bulletin No 235, maximum residue limits of veterinary medicinal products in foodstuffs and animal origin. Beijing, China

    Google Scholar 

  7. Jin Y, He Y, Zhao D et al (2021) Development of an amplified luminescent proximity homogeneous assay for the detection of sulfonamides in animal-derived products. Food Sci Nutr 9:4938–4945. https://doi.org/10.1002/fsn3.2443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong B, Yu S, Zhou M et al (2021) Development of a pH-paralleling approach of quantifying six-category pharmaceuticals in surface water using SPE-HPLC-MS/MS. Watershed Ecol Environ 3:1–16. https://doi.org/10.1016/j.wsee.2021.01.001

    Article  Google Scholar 

  9. Chen L, Zhao Q, Xu Y et al (2010) A green method using micellar system for determination of sulfonamides in soil. Talanta 82:1186–1192. https://doi.org/10.1016/j.talanta.2010.06.031

    Article  CAS  PubMed  Google Scholar 

  10. Guidi LR, Santos FA, Ribeiro ACSR et al (2017) A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish. Talanta 163:85–93. https://doi.org/10.1016/j.talanta.2016.10.089

    Article  CAS  PubMed  Google Scholar 

  11. Jank L, Martins MT, Arsand JB et al (2018) An LC–ESI–MS/MS method for residues of fluoroquinolones, sulfonamides, tetracyclines and trimethoprim in feedingstuffs: validation and surveillance. Food Addit Contaminants: Part A 35:1975–1989. https://doi.org/10.1080/19440049.2018.1508895

    Article  CAS  Google Scholar 

  12. Okerman L, Hoof JV, Debeuckelaere W (1998) Evaluation of the European four-plate test as a tool for screening antibiotic residues in meat samples from retail outlets. J AOAC Int 81:51–56. https://doi.org/10.1093/jaoac/81.1.51

    Article  CAS  PubMed  Google Scholar 

  13. Sarwer MG, Rony MMH, Sharmin MSS et al (2017) ELISA validation and determination of cut-off level for chloramphenicol (CAP) residues in shrimp and fish. Our Nat 15:13–18. https://doi.org/10.3126/on.v15i1-2.18789

    Article  Google Scholar 

  14. Zuo L, Ren K, Guo X et al (2023) Amalgamation of DNAzymes and nanozymes in a coronazyme. J Am Chem Soc 145:5750–5758. https://doi.org/10.1021/jacs.2c12367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen C, Chen Y, Wang X et al (2023) In situ synthesized nanozyme for photoacoustic-imaging-guided photothermal therapy and tumor hypoxia relief. iScience 26:106066. https://doi.org/10.1016/j.isci.2023.106066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ni P, Dai H, Wang Y et al (2014) Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens Bioelectron 60:286–291. https://doi.org/10.1016/j.bios.2014.04.029

    Article  CAS  PubMed  Google Scholar 

  17. André R, Natálio F, Humanes M et al (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509. https://doi.org/10.1002/adfm.201001302

    Article  CAS  Google Scholar 

  18. Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun 48:2540. https://doi.org/10.1039/c2cc17013b

    Article  CAS  Google Scholar 

  19. Song Y, Qu K, Zhao C et al (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210. https://doi.org/10.1002/adma.200903783

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L-N, Deng H-H, Lin F-L et al (2014) In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal Chem 86:2711–2718. https://doi.org/10.1021/ac404104j

    Article  CAS  PubMed  Google Scholar 

  21. Zandieh M, Liu Jw, Li Y (2023) Nanozymes: definition, activity, and mechanisms. Adv Mater 2211041. https://doi.org/10.1002/adma.202211041

  22. Chi C, Zhang W, Luo M et al (2023) A potential application of a novel synergistic catalytic nanocluster system composed of biological enzymes and nanozyme in glycerol bioconversion. Chem Eng J 458:141321. https://doi.org/10.1016/j.cej.2023.141321

    Article  CAS  Google Scholar 

  23. Guo L, Zhang Y-J, Yu Y-L, Wang J-H (2020) In situ generation of Prussian blue by MIL-53 (fe) for point-of-care testing of butyrylcholinesterase activity using a portable high-throughput photothermal device. Anal Chem 92:14806–14813. https://doi.org/10.1021/acs.analchem.0c03575

    Article  CAS  PubMed  Google Scholar 

  24. Kavitha S, Mary Jelastin Kala S, Anand Babu Christus A, Ravikumar A (2021) Colorimetric determination of cysteine and copper based on the peroxidase-like activity of Prussian blue nanocubes. RSC Adv 11:37162–37170. https://doi.org/10.1039/D1RA06838E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kozell A, Liao W-C, Cecconello A et al (2017) Mimicking peroxidase activities with Prussian blue nanoparticles and their cyanometalate structural analogues. Nano Lett 17:4958–4963. https://doi.org/10.1021/acs.nanolett.7b02102

    Article  CAS  PubMed  Google Scholar 

  26. Liao C-X, Jia B-Z, Wang H et al (2022) Prussian blue nanoparticles-enabled sensitive and accurate ratiometric fluorescence immunoassay for histamine. Food Chem 376:131907. https://doi.org/10.1016/j.foodchem.2021.131907

    Article  CAS  Google Scholar 

  27. Liu Q, Liu Y, Wan Q et al (2023) Label-free, reusable, equipment-free, and visual detection of hydrogen sulfide using a colorimetric and fluorescent dual-mode sensing platform. Anal Chem 95:5920–5926. https://doi.org/10.1021/acs.analchem.2c05364

    Article  CAS  PubMed  Google Scholar 

  28. Kong X, Wang J, Lv S et al (2023) Bidirectional motivated bimodal isothermal strand displacement amplifier with a table tennis-like movement for the ultrasensitive fluorescent and colorimetric detection of depression-related microRNA. Anal Chim Acta 1247:340894. https://doi.org/10.1016/j.aca.2023.340894

    Article  CAS  PubMed  Google Scholar 

  29. Fan YJ, Wang ZG, Su M et al (2023) A dual-signal fluorescent colorimetric tetracyclines sensor based on multicolor carbon dots as probes and smartphone-assisted visual assay. Anal Chim Acta 1247:340843. https://doi.org/10.1016/j.aca.2023.340843

    Article  CAS  PubMed  Google Scholar 

  30. Huang C, Ma R, Luo Y et al (2020) Stimulus response of TPE-TS@Eu/GMP ICPs: toward colorimetric sensing of an anthrax biomarker with double ratiometric fluorescence and its coffee ring test kit for point-of-use application. Anal Chem 92:12934–12942. https://doi.org/10.1021/acs.analchem.0c01570

    Article  CAS  PubMed  Google Scholar 

  31. Liu M, He Y, Zhou J et al (2019) A ‘naked-eye’ colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. J Pre-proof S0003–26701931539–9. https://doi.org/10.1016/j.aca.2019.12.069

  32. Gui Y, Zhao Y, Liu P et al (2024) Colorimetric and reverse fluorescence dual-signal readout immunochromatographic assay for the sensitive determination of sibutramine. ACS Omega 9:7075–7084. https://doi.org/10.1021/acsomega.3c09050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang N, Lv H, Wang J et al (2023) An aptamer-based colorimetric/SERS dual-mode sensing strategy for the detection of sulfadimethoxine residues in animal-derived foods. Anal Methods 15:1047–1053. https://doi.org/10.1039/D2AY01825J

    Article  CAS  PubMed  Google Scholar 

  34. Zhu T, Li B (2013) Research progress on enzyme-linked immunoassay of small molecule drug residues in food of animal origin. Agricultural Disaster Res 54:47–50. https://doi.org/10.19383/j.cnki.nyzhyj.2013.07.015

    Article  Google Scholar 

  35. Li M, He B (2021) Ultrasensitive sandwich-type electrochemical biosensor based on octahedral gold nanoparticles modified poly (ethylenimine) functionalized graphitic carbon nitride nanosheets for the determination of sulfamethazine. Sens Actuators B 329:129158. https://doi.org/10.1016/j.snb.2020.129158

    Article  CAS  Google Scholar 

  36. Hsia C-F, Madasu M, Huang MH (2016) Aqueous phase synthesis of Au–Cu core–shell nanocubes and octahedra with tunable sizes and noncentrally located cores. Chem Mater 28:3073–3079. https://doi.org/10.1021/acs.chemmater.6b00377

    Article  CAS  Google Scholar 

  37. Xue X, Gao M, Rao H et al (2020) Photothermal and colorimetric dual mode detection of nanomolar ferric ions in environmental sample based on in situ generation of Prussian blue nanoparticles. Anal Chim Acta 1105:197–207. https://doi.org/10.1016/j.aca.2020.01.049

    Article  CAS  PubMed  Google Scholar 

  38. Zhao YL, Yang T, Tong Y et al (2017) Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Mater 138:72–82. https://doi.org/10.1016/j.actamat.2017.07.029

    Article  CAS  Google Scholar 

  39. Qu P, Wu G, Qu H et al Inner Filter Effect of Thioflavin T on the fourescence of carbom dots and its application to Cu(II) detection. J Anal Sci. https://doi.org/10.13526/j.issn.1006-6144,2015,04,015

  40. Lu D, Jiang H, Zhang G et al (2021) An in situ generated Prussian blue nanoparticle-mediated multimode nanozyme-linked immunosorbent assay for the detection of aflatoxin B1. ACS Appl Mater Interfaces 13:25738–25747. https://doi.org/10.1021/acsami.1c04751

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Li Y, Li Q et al (2017) Quantitative detection of sulfadimethoxine in fish based on the recognition of gold nanoparticles labeled aptamers. Science and Technology of Food Industry. https://doi.org/10.13386/j.issn1002-0306

  42. Son SE, Gupta PK, Hur W et al (2020) Determination of glycated albumin using a Prussian blue nanozyme-based boronate affinity sandwich assay. Anal Chim Acta 1134:41–49. https://doi.org/10.1016/j.aca.2020.08.015

    Article  CAS  PubMed  Google Scholar 

  43. He Q, Yang H, Chen Y et al (2020) Prussian blue nanoparticles with peroxidase-mimicking properties in a dual immunoassays for glycocholic acid. J Pharm Biomed Anal 187:113317. https://doi.org/10.1016/j.jpba.2020.113317

    Article  CAS  PubMed  Google Scholar 

  44. Li Q, Li H, Li K et al (2023) Specific colorimetric detection of methylmercury based on peroxidase-like activity regulation of carbon dots/Au NPs nanozyme. J Hazard Mater 441:129919. https://doi.org/10.1016/j.jhazmat.2022.129919

    Article  CAS  PubMed  Google Scholar 

  45. Yang Y, Zou T, Wang Z et al (2019) The fluorescent quenching mechanism of N and S co-doped graphene quantum dots with Fe3 + and Hg2 + ions and their application as a novel fluorescent sensor. Nanomaterials 9:738. https://doi.org/10.3390/nano9050738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by Open Foundation of Institute of Ocean Research of Bohai University (No. BDHYYJY2202002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuepeng Li or Jianrong Li.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Liu, L., Jia, M. et al. A dual-mode fluorometric/colorimetric sensor for sulfadimethoxine detection based on Prussian blue nanoparticles and carbon dots. Microchim Acta 191, 284 (2024). https://doi.org/10.1007/s00604-024-06358-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06358-5

Keywords

Navigation