Skip to main content
Log in

Reusable graphite-based electrochemical sensors for L-dopa and dopamine detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fully reusable electrochemical device is proposed for the first time made from laser cutting and a homemade conductive ink composed of carbon and nail polish. As a sensor substrate, we applied polymethyl methacrylate, which allows the surface to be renewed by simply removing and reapplying a new layer of ink. In addition to the ease of renewing the sensor’s conductive surface, the design of the device has allowed for the integration of different forms of analysis. The determination of L-Dopa was performed using DPV, which presented a linear response range between 5.0 and 1000.0 μmol L−1, and a LOD of 0.11 μmol L−1. For dopamine, a flow injection analysis system was employed, and using the amperometric technique measurements were performed with a linear ranging from 2.0 to 100.0 μmol L−1 and a LOD of 0.26 μmol L−1. To demonstrate its applicability, the device was used in the quantification of analytes in pharmaceutical drug and synthetic urine samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Baranwal J, Barse B, Gatto G, Broncova G, Kumar A (2022) Electrochemical sensors and their applications: A review. Chemosensors 10:363

    CAS  Google Scholar 

  2. Zheng Y, Mao S, Zhu J, Fu L, Moghadam M (2022) A scientometric study on application of electrochemical sensors for detection of pesticide using graphene-based electrode modifiers. Chemosphere 307:136069

    CAS  PubMed  Google Scholar 

  3. He Q, Wang B, Liang J, Liu J, Liang B, Li G et al (2023) Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring. Mater Today Adv 17:100340

    CAS  Google Scholar 

  4. Timilsina SS, Durr N, Jolly P, Ingber DE (2023) Rapid quantitation of SARS-CoV-2 antibodies in clinical samples with an electrochemical sensor. Biosens Bioelectron 223:115037

    CAS  PubMed  Google Scholar 

  5. Nemčeková K, Labuda J (2021) Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. Mater Sci Eng, C 120:111751

    Google Scholar 

  6. Blasques RV, de Oliveira PR, Kalinke C, Brazaca LC, Crapnell RD, Bonacin JA, Banks CE, Janegitz BC (2023) Flexible label-free platinum and bio-pet-based immunosensor for the detection of SARS-CoV-2. Biosensors 13:190

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Švorc Ľ, Haššo M, Sarakhman O, Kianičková K, Stanković DM, Otřísal P (2018) A progressive electrochemical sensor for food quality control: Reliable determination of theobromine in chocolate products using a miniaturized boron-doped diamond electrode. Microchem J 142:297–304

    Google Scholar 

  8. Sun Y, Waterhouse GIN, Qiao X, Xiao J, Xu Z (2023) Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-A review. Food Chem 410:135434

    CAS  PubMed  Google Scholar 

  9. Blasques RV, Stefano JS, Camargo JR, L.R. Guterres e Silva, L.C. Brazaca, B.C. Janegitz, (2022) Disposable Prussian blue-anchored electrochemical sensor for enzymatic and non-enzymatic multi-analyte detection. Sensors and Actuators Reports 4:100118

    Google Scholar 

  10. de Araujo Andreotti IA, Orzari LO, Camargo JR, Faria RC, Marcolino-Junior LH, Bergamini MF et al (2019) Disposable and flexible electrochemical sensor made by recyclable material and low cost conductive ink. J Electroanal Chem 840:109–16

    Google Scholar 

  11. Ahamed A, Ge L, Zhao K, Veksha A, Bobacka J, Lisak G (2021) Environmental footprint of voltammetric sensors based on screen-printed electrodes: An assessment towards “green” sensor manufacturing. Chemosphere 278:130462

    CAS  PubMed  Google Scholar 

  12. Feitor JF, Brazaca LC, Lima AM, Ferreira VG, Kassab G, Bagnato VS et al (2023) Organ-on-a-Chip for drug screening: a bright future for sustainability? A critical review. ACS Biomater Sci Eng 9:2220–2234

    CAS  PubMed  Google Scholar 

  13. Dekanski A, Stevanović J, Stevanović R, Nikolić BŽ, Jovanović VMJC (2001) Glassy carbon electrodes: I. Charact Electrochem Activation 39:1195–1205

    CAS  Google Scholar 

  14. Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (Methyl Methacrylate) (PMMA). Polym Rev 55:678–705

    CAS  Google Scholar 

  15. Choudhury IA, Shirley S (2010) Laser cutting of polymeric materials: An experimental investigation. Opt Laser Technol 42:503–508

    CAS  Google Scholar 

  16. Wei F, Patel P, Liao W, Chaudhry K, Zhang L, Arellano-Garcia M et al (2009) Electrochemical sensor for multiplex biomarkers detection. Clin Cancer Res 15:4446–4452

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mohan JM, Amreen K, Javed A, Dubey SK, Goel S (2020) Miniaturized PMMA electrochemical platform with carbon fiber for multiplexed and noninterfering biosensing of real samples. IEEE Trans Electron Devices 68:769–74

    Google Scholar 

  18. Favaro PC, Bode P (2005) EA De Nadai Fernandes, Trace elements in nail polish as a source of contamination of nail clippings when used in epidemiological studies. J Radioanal Nucl Chem 264:61–5

    Google Scholar 

  19. Iorizzo M, Piraccini BM, Tosti A (2007) Nail cosmetics in nail disorders. J Cosmet Dermatol 6:53–8

    PubMed  Google Scholar 

  20. Oliveira TG, Santos BG, Gonçalves JM, Angnes L (2023) Electroanalysis 35:e202200441

  21. da Silva Ferreira ME, de Moraes NC, Souza Ferreira V, da Silva RAB, Petroni JM, Lucca BG (2022) A novel 3D-printed batch injection analysis (BIA) cell coupled to paper-based electrochemical devices: A cheap and reliable analytical system for fast on-site analysis. Microchem J 179:107663

    Google Scholar 

  22. Pereira PF, Marra MC, Munoz RAA, Richter EM (2012) Fast batch injection analysis system for on-site determination of ethanol in gasohol and fuel ethanol. Talanta 90:99–102

    CAS  PubMed  Google Scholar 

  23. Veloso WB, Ribeiro GAC, da Rocha CQ, Tanaka AA, da Silva IS, Dantas LMF (2020) Flow-through amperometric determination of ampicillin using a copper electrode in a batch injection analysis system. Measurement 155:107516

    Google Scholar 

  24. Costa WRP, Rocha RG, de Faria LV, Matias TA, Ramos DLO, Dias AGC et al (2022) Affordable equipment to fabricate laser-induced graphene electrodes for portable electrochemical sensing. Microchim Acta 189:185

    CAS  Google Scholar 

  25. Xiao S, Yang X, Wu J, Liu Q, Li D, Huang S et al (2022) Reusable electrochemical biosensing platform based on egg yolk antibody-labeled magnetic covalent organic framework for on-site detection of Escherichia coli in foods. Sens Actuators, B Chem 369:132320

    CAS  Google Scholar 

  26. Riswana Barveen N, Wang T-J, Chang Y-H, Rajakumaran R (2022) Ultrasensitive and reusable SERS platform based on Ag modified WO3 nanoflakes for catechol detection. Mater Sci Eng B 282:115753

    CAS  Google Scholar 

  27. Saylor RA, Lunte SM (2018) PDMS/glass hybrid device with a reusable carbon electrode for on-line monitoring of catecholamines using microdialysis sampling coupled to microchip electrophoresis with electrochemical detection. Electrophoresis 39:462–469

    CAS  PubMed  Google Scholar 

  28. Jeromin A, Bowser R (2017) Biomarkers in Neurodegenerative Diseases. In: Beart P, Robinson M, Rattray M, Maragakis NJ (eds) Neurodegenerative diseases: pathology, mechanisms, and potential therapeutic targets. Springer International Publishing, Cham, pp 491–528

    Google Scholar 

  29. Parkinson Study Group (2004) Levodopa and the progression of Parkinson’s disease. New Engl J Med 351(24):2498–2508

    Google Scholar 

  30. Barone P (2010) Neurotransmission in Parkinson’s disease: beyond dopamine. Eur J Neurol 17(3):364–376

    CAS  PubMed  Google Scholar 

  31. Carvalho JHS, Gogola JL, Bergamini MF, Marcolino-Junior LH, Janegitz BC (2021) Disposable and low-cost lab-made screen-printed electrodes for voltammetric determination of L-dopa. Sensors and Actuators Reports 3:100056

    Google Scholar 

  32. Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24:203–6

    CAS  PubMed  Google Scholar 

  33. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A Practical Beginner’s Guide to Cyclic Voltammetry. J Chem Educ 95:197–206

    CAS  Google Scholar 

  34. Palakollu VN, Thapliyal N, Chiwunze TE, Karpoormath R, Karunanidhi S, Cherukupalli S (2017) Electrochemically reduced graphene oxide/Poly-Glycine composite modified electrode for sensitive determination of l-dopa. Mater Sci Eng, C 77:394–404

    CAS  Google Scholar 

  35. Quintino M, Yamashita M, Angnes L (2006) Voltammetric studies and determination of levodopa and carbidopa in pharmaceutical products. Electroanalysis 18:655–661

    CAS  Google Scholar 

  36. Reddaiah K, Madhusudana Reddy T, Raghu P (2012) Electrochemical investigation of L-dopa and simultaneous resolution in the presence of uric acid and ascorbic acid at a poly (methyl orange) film coated electrode: A voltammetric study. J Electroanal Chem 682:164–71

    CAS  Google Scholar 

  37. Crapnell RD, Banks CE (2023) Electroanalytical overview: the determination of Levodopa (L-DOPA). ACS Meas Sci Au 3:84–97

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2:21–5

    Google Scholar 

  39. Dutton J, Copeland LG, Playfer JR, Roberts NB (1993) Measuring L-dopa in plasma and urine to monitor therapy of elderly patients with Parkinson disease treated with L-dopa and a dopa decarboxylase inhibitor. Clin Chem 39:629–634

    CAS  PubMed  Google Scholar 

  40. Routh JI, Bannow RE, Fincham RW, Stoll JL (1971) Excretion of L-Dopa and Its Metabolites in Urine of Parkinson’s Disease Patients Receiving L-Dopa Therapy. Clin Chem 17:867–871

    CAS  PubMed  Google Scholar 

  41. Đurđić S, Stanković V, Vlahović F, Ognjanović M, Kalcher K, Manojlović D et al (2021) Carboxylated single-wall carbon nanotubes decorated with SiO2 coated-Nd2O3 nanoparticles as an electrochemical sensor for L-DOPA detection. Microchem J 168:106416

    Google Scholar 

  42. Hatefi-Mehrjardi A et al (2017) Poly-dianix blue/multi-walled carbon nanotube modified electrode for detection of levodopa in the presence of high concentrations of ascorbic and uric acids. Acta Chimica Slovenica 64:1

    Google Scholar 

  43. Takeda HH, Silva TA, Janegitz BC, Vicentini FC, Mattoso LHC, Fatibello-Filho OJAM (2016) Electrochemical sensing of levodopa or carbidopa using a glassy carbon electrode modified with carbon nanotubes within a poly (allylamine hydrochloride) film. Anal Methods 8:1274–1280

    CAS  Google Scholar 

  44. Guo X, Yue H, Huang S, Gao X, Chen H, Wu P et al (2020) Electrochemical method for determination of levodopa in the presence of uric acid using In2S3 nanospheres on 3D graphene-modified ITO glass electrode. J Mater Sci: Mater Electron 31:13680–13687

    CAS  Google Scholar 

  45. Afkhami A, Kafrashi F, Madrakian T (2015) Electrochemical determination of levodopa in the presence of ascorbic acid by polyglycine/ZnO nanoparticles/multi-walled carbon nanotubes-modified carbon paste electrode. Ionics 21:2937–2947

    CAS  Google Scholar 

  46. Ji D, Xu N, Liu Z, Shi Z, Low SS, Liu J et al (2019) Smartphone-based differential pulse amperometry system for real-time monitoring of levodopa with carbon nanotubes and gold nanoparticles modified screen-printing electrodes. Biosens Bioelectron 129:216–223

    CAS  PubMed  Google Scholar 

  47. Yue HY, Wu PF, Huang S, Gao X, Wang Z, Wang WQ et al (2019) Electrochemical determination of levodopa in the presence of uric acid using ZnO nanoflowers-reduced graphene oxide. J Mater Sci: Mater Electron 30:3984–3993

    CAS  Google Scholar 

  48. Rohanifar A, Devasurendra AM, Young JA, Kirchhoff JR (2016) Determination of l-DOPA at an optimized poly(caffeic acid) modified glassy carbon electrode. Anal Methods 8:7891–7897

    CAS  Google Scholar 

  49. Baião V, Tomé LIN, Brett CMA (2018) Iron oxide nanoparticle and multiwalled carbon nanotube modified glassy carbon electrodes. App Levodopa Detect 30:1342–1348

    Google Scholar 

  50. Ganjali MR, Salimi H, Tajik S, Beitollahi H, Rezapour M, Larijani B (2017) Application of Fe3O4@ SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa. Int J Electrochem Sci 12:5243–5253

    CAS  Google Scholar 

  51. Baghayeri M, Beitollahi H, Akbari A, Farhadi S (2018) Highly sensitive nanostructured electrochemical sensor based on carbon nanotubes-Pt nanoparticles paste electrode for simultaneous determination of Levodopa and Tyramine. Russ J Electrochem 54:292–301

    CAS  Google Scholar 

  52. Yue HY, Song SS, Huang S, Zhang H, Gao XPA, Gao X, Lin XY, Yao LH, Guan EH, Zhang HJ (2017) Electroanalysis 29:2565

    CAS  Google Scholar 

  53. Singh H, Bernabe J, Chern J, Nath M (2021) Copper selenide as multifunctional non-enzymatic glucose and dopamine sensor. J Mater Res 36:1413–1424

    CAS  Google Scholar 

  54. Muratova IS, Mikhelson KN (2018) Voltammetric sensing of dopamine in urine samples with electrochemically activated commercially available screen-printed carbon electrodes. Int J Biosens Bioelectron 4:169–173

    Google Scholar 

  55. Ann Elchisak M, Hausner EA (1984) Demonstration of N-acetyldopamine in human kidney and urine. Life Sci 35:2561–9

    Google Scholar 

  56. Wan M, Jimu A, Yang H, Zhou J, Dai X, Zheng Y et al (2023) MXene quantum dots enhanced 3D-printed electrochemical sensor for the highly sensitive detection of dopamine. Microchem J 184:108180

    CAS  Google Scholar 

  57. da Silva VNC, de O Farias EA, Araújo AR, Magalhães FEX, Fernandes JRN, Souza JMT, Eiras C, da Silva DA, do Vale Bastos VH, Teixeira SS et al (2022) Rapid and selective detection of dopamine in human serum using an electrochemical sensor based on zinc oxide nanoparticles, nickel phthalocyanines, and carbon nanotubes. Biosensors and Bioelectronics 210: 114211

    Google Scholar 

  58. Shervedani RK, Bagherzadeh M, Mozaffari SA (2006) Determination of dopamine in the presence of high concentration of ascorbic acid by using gold cysteamine self-assembled monolayers as a nanosensor. Sens Actuators, B Chem 115:614–621

    CAS  Google Scholar 

  59. Xue C, Han Q, Wang Y, Wu J, Wen T, Wang R et al (2013) Amperometric detection of dopamine in human serumby electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. Biosens Bioelectron 49:199–203

    CAS  PubMed  Google Scholar 

  60. Li B, Zhou Y, Wu W, Liu M, Mei S, Zhou Y et al (2015) Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly(nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron 67:121–128

    CAS  PubMed  Google Scholar 

  61. del Pozo M, Mejías J, Hernández P, Quintana C (2014) Cucurbit[8]uril-based electrochemical sensors as detectors in flow injection analysis. Application to dopamine determination in serum samples. Sens Actuators B: Chem 193:62–69

    Google Scholar 

  62. Chen P-Y, Vittal R, Nien P-C, Ho K-C (2009) Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion®. Biosens Bioelectron 24:3504–3509

    CAS  PubMed  Google Scholar 

  63. Wong A, Santos AM, Fatibello-Filho O (2018) Simultaneous determination of dopamine and cysteamine by flow injection with multiple pulse amperometric detection using a boron-doped diamond electrode. Diam Relat Mater 85:68–73

    CAS  Google Scholar 

  64. Gimenes D, dos Santos W, Tormin T, Munoz R, Richter E (2010) Flow-injection amperometric method for indirect determination of dopamine in the presence of a large excess of ascorbic acid. Electroanalysis 22:74–78

    CAS  Google Scholar 

  65. Júnior LR, Fernandes JCB, de Oliveira Neto G, Kubota LT (2000) Development of a new FIA-potentiometric sensor for dopamine based on EVA-copper(II) ions. J Electroanal Chem 481:34–41

    Google Scholar 

  66. Sýs M, Mukherjee A, Jashari G, Adam V, Ashrafi AM, Novák M et al (2021) Bis(2,2′-bipyridil)Copper(II) Chloride Complex: Tyrosinase Biomimetic Catalyst or Redox Mediator? Materials 14:113

    Google Scholar 

  67. Yao T, Okano G (2008) Simultaneous Determination of l-Glutamate, Acetylcholine and Dopamine in Rat Brain by a Flow-Injection Biosensor System with Microdialysis Sampling. Anal Sci 24:1469–1473

    CAS  PubMed  Google Scholar 

  68. Yeh W-L, Kuo Y-R, Cheng S-H (2008) Voltammetry and flow-injection amperometry for indirect determination of dopamine. Electrochem Commun 10:66–70

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian funding agencies FAPESP (2017/21097-3), CAPES-Brazil—Finance Code 001, and CNPq (301796/2022-0).

Funding

This research was funded by FAPESP (2017/21097–3), CAPES (Finance Code 001), and CNPq (301796/2022–0).

Author information

Authors and Affiliations

Authors

Contributions

Rodrigo V. Blasques: Investigation, Methodology, Data curation, Writing—original draft. Jéssica S. Stefano: Investigation, Conceptualization, Validation, Data curation, Writing—review & editing. Vinicius A. O. P. da Silva: Conceptualization, Validation, Data curation, Writing—review & editing. Laís C. Brazaca: Conceptualization, Validation, Writing—review & editing. Bruno C. Janegitz: Conceptualization, Visualization, Supervision, Project administration, Resources, Funding acquisition, Writing—review & editing.

Corresponding authors

Correspondence to Laís Canniatti Brazaca or Bruno Campos Janegitz.

Ethics declarations

Ethical approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1067 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasques, R.V., Stefano, J.S., da Silva, V.A.O.P. et al. Reusable graphite-based electrochemical sensors for L-dopa and dopamine detection. Microchim Acta 191, 197 (2024). https://doi.org/10.1007/s00604-024-06271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06271-x

Keywords

Navigation