Skip to main content
Log in

Photoelectrochemical aptasensing with methylene blue filled Ni-MOFs nanocomposite by spatial confinement for microcystin-LR detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Microcystin LR (MC-LR) is a hazardous cyanotoxin produced by cyanobacteria during freshwater eutrophication, which can cause liver cancer. Here, a photoelectrochemical (PEC) aptasensor based on methylene blue (MB)–loaded Ni-MOF composite (Ni-MOF/MB) with spatial confinement was constructed for the sensitive detection of MC-LR. Ni-MOF with two-dimensional sheet structure was prepared via a liquid–liquid interface synthesis method with environmental-friendly solvent and milder reaction conditions. Benefiting from the uniform pore size, Ni-MOF acted as reaction platform to anchor the photosensitive molecule MB. The electron donor, ascorbic acid (AA), was produced by alkaline phosphatase (ALP) loaded on DNA strand catalyzing ascorbic acid phosphate. The generated AA was absorbed by Ni-MOF/MB, thereby effectively improving the utilization of AA and avoiding the external environment interferences to enlarge the photocurrent of MB. For analysis, ALP-labeled aptamer can specifically recognize MC-LR by forming a complex to strip from aptasensor, thus leading to a  decreased photocurrent. The developed PEC aptasensor offered a linear range of 10 fM–100 pM with a detection limit of 6 fM. It was successfully employed for detecting MC-LR in farm water and fish meat, and the results were validated by ultrahigh-performance liquid chromatography-mass spectrometry. This method presents a new idea of MOF-limited domain for PEC aptasensing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data is available on request from the authors.

References

  1. Cheng R, Hou S, Wang J, Zhu H, Shutes B, Yan B (2022) Biochar-amended constructed wetlands for eutrophication control and microcystin (MC-LR) removal. Chemosphere 295:133830

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Cai D, Wei J, Huang F, Feng H, Peng T, Luo J, Yang F (2022) The detoxification activities and mechanisms of microcystinase towards MC-LR. Ecotoxicol Environ Saf 236:113436

    Article  CAS  PubMed  Google Scholar 

  3. Tian X, She C, Qi Z, Xu X (2019) Magnetic-graphene oxide based molecularly imprinted polymers for selective extraction of microsystin-LR prior to the determination by HPLC. Microchem J 146:1126–1133

    Article  CAS  Google Scholar 

  4. Xu ZL, Ye SL, Luo L, Hua X, Lai JX, Cai XP, Liang QW, Lei HT, Sun YM, Chen YP, Shen X (2020) Fluorescent enzyme-linked immunoassay based on silane-doped carbon dots for sensitive detection of microcystin-LR in water and crucian samples. Sci Total Environ 708:134614

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hawkins PR, Novic S, Cox P, Neilan BA, Burns BP, Shaw G, Wickramasinghe W, Peerapornpisal Y, Ruangyuttikarn ACSS, Article W, Itayama T, Saitou T et al (2005) Motoyuki Mizuochi, Yuhei Inamori A review of analytical methods for assessing the public health risk from microcystin in the aquatic environment, Journal of Water Supply. Research and Technology 54:509–518

    CAS  Google Scholar 

  6. Li X, Cheng R, Shi H, Tang B, Xiao H, Zhao G (2016) A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. J Hazard Mater 304:474–480

    Article  CAS  PubMed  Google Scholar 

  7. Han Y, Du Y, Xu K, Ren X, Zhao G, Ru Z, Jia Y, Wei Q (2023) Sulfur quantum dot-based electrochemiluminescence resonance energy transfer system for a dual-mode ultrasensitive detection of MC-LR using Ag+ as a signal amplification switch. Anal Chem 95:8679–8686

    Article  CAS  PubMed  Google Scholar 

  8. Cao H, Dong W, Wang T, Shi W, Fu C, Wu Y (2020) Aptasensor based on MoS2 quantum dots with upconversion fluorescence for microcystin-LR detection via the inner filter effect. Acs Sustainable Chemistry & Engineering 8:10939–10946

    CAS  Google Scholar 

  9. Luo X, Zhao X, Wallace GQ, Brunet MH, Wilkinson KJ, Wu P, Cai C, Bazuin CG, Masson JF (2021) Multiplexed SERS detection of microcystins with aptamer-driven core-satellite assemblies. ACS Appl Mater Interfaces 13:6545–6556

    Article  CAS  PubMed  Google Scholar 

  10. Fan L, Xiao G, Wang ML, Zhao S, Yang QC, Cheng LY, Huang JH, Yue Z (2021) Ultrasensitive photoelectrochemical microcystin-LR immunosensor using carboxyl-functionalized graphene oxide enhanced gold nanoclusters for signal amplification. Anal Chim Acta 1183:338870

    Google Scholar 

  11. Meng S, Liu D, Li Y, Dong N, Chen T, You T (2022) Engineering the signal transduction between CdTe and CdSe quantum dots for in situ ratiometric photoelectrochemical immunoassay of Cry1Ab protein. J Agric Food Chem 70:13583–13591

    Article  CAS  PubMed  Google Scholar 

  12. Shu J, Tang D (2020) Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. Anal Chem 92:363–377

    Article  CAS  PubMed  Google Scholar 

  13. Song M, Sun H, Yu J, Wang Y, Li M, Liu M, Zhao G (2021) Enzyme-free molecularly imprinted and graphene-functionalized photoelectrochemical sensor platform for pollutants. ACS Appl Mater Interfaces 13:37212–37222

    Article  CAS  PubMed  Google Scholar 

  14. Liu D, Meng S, Shen X, Li Y, Yan X, You T (2021) Dual-ratiometric aptasensor for streptomycin detection based on the in-situ coupling of photoelectrochemical and electrochemical assay with a bifunctional probe of methylene blue. Sensors And Actuators B-chemica 332:129529

    Article  CAS  Google Scholar 

  15. Liu D, Gong Q, Xu X, Meng S, Li Y, You T (2023) Photoelectrochemical aptasensor based on cascade dual Z-scheme CdTe-polyaniline@MoS2 heterostructure for the sensitive carbendazim detection. J Electroanal Chem 930:117143

    Article  CAS  Google Scholar 

  16. Luo L, Liu X, Ma S, Li L, You T (2020) Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chem 322:126778

    Article  CAS  PubMed  Google Scholar 

  17. Guo Z, Jiang K, Jiang H, Zhang H, Liu Q, You T (2022) Photoelectrochemical aptasensor for sensitive detection of tetracycline in soil based on CdTe-BiOBr heterojunction: Improved photoactivity enabled by Z-scheme electron transfer pathway. J Hazard Mater 424:127498

    Article  CAS  PubMed  Google Scholar 

  18. Du X, Jiang D, Li H, Hao N, You T, Wang K (2018) An intriguing signal-off responsive photoelectrochemical aptasensor for ultrasensitive detection of microcystin-LR and its mechanism study. Sensors And Actuators B-chemica 259:316–324

    Article  CAS  Google Scholar 

  19. Wei J, Chang W, Qileng A, Liu W, Zhang Y, Rong S, Lei H, Liu Y (2018) Dual-modal split-type immunosensor for sensitive detection of microcystin-LR: enzyme-induced photoelectrochemistry and colorimetry. Anal Chem 90:9606–9613

    Article  CAS  PubMed  Google Scholar 

  20. Viciano-Chumillas M, Mon M, Ferrando-Soria J, Corma A, Leyva-Perez A, Armentano D, Pardo E (2020) Metal-organic frameworks as chemical nanoreactors: synthesis and stabilization of catalytically active metal species in confined spaces. Acc Chem Res 53:520–531

    Article  CAS  PubMed  Google Scholar 

  21. Wang M, Dong X, Meng Z, Hu Z, Lin YG, Peng CK, Wang H, Pao CW, Ding S, Li Y, Shao Q, Huang X (2021) An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew Chem Int Ed 60:11190–11195

    Article  CAS  Google Scholar 

  22. Miao J, Du K, Li X, Xu X, Dong X, Fang J, Cao W, Wei Q (2021) Ratiometric electrochemical immunosensor for the detection of procalcitonin based on the ratios of SiO(2)-Fc-COOH-Au and UiO-66-TB complexes. Biosens Bioelectron 171:112713

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Liu G, Qi Y, Yuan Y, Gao J, Luo X, Yang T (2019) Embedded Au nanoparticles-based ratiometric electrochemical sensing strategy for sensitive and reliable detection of copper ions. Anal Chem 91:12006–12013

    Article  CAS  PubMed  Google Scholar 

  24. Dong J, Wen L, Yang H, Zhao J, He C, Hu Z, Peng L, Hou C, Huo D (2022) Catalytic hairpin assembly-driven ratiometric dual-signal electrochemical biosensor for ultrasensitive detection of microRNA based on the ratios of Fe-MOFs and MB-GA-UiO-66-NH2. Anal Chem 94:5846–5855

    Article  CAS  PubMed  Google Scholar 

  25. He J, Yang H, Zhang Y, Yu J, Miao L, Song Y, Wang L (2016) Smart nanocomposites of Cu-Hemin metal-organic frameworks for electrochemical glucose biosensing. Sci Rep 6:36637

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang J, Jin N, Ji N, Chen X, Shen Y, Pan T, Li L, Li S, Zhang W, Huo F (2021) The encounter of biomolecules in metal-organic framework micro/nano reactors. ACS Appl Mater Interfaces 13:52215–52233

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Y, Yin H, Ai S (2021) Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: a comprehensive review. Coord Chem Rev 447:214156

    Article  CAS  Google Scholar 

  28. Ng A, Chinnappan R, Eissa S, Liu H, Tlili C, Zourob M (2012) Selection, characterization, and biosensing application of high affinity congener-specific microcystin-targeting aptamers. Environ Sci Technol 46:10697–10703

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Moreno IM, Molina R, Jos A, Pico Y (2005) Camean, A. M., Determination of microcystins in fish by solvent extraction and liquid chromatography. J Chromatogr A 1080:199–203

    Article  CAS  PubMed  Google Scholar 

  30. Eissa S, Zourob M (2012) A graphene-based electrochemical competitive immunosensor for the sensitive detection of okadaic acid in shellfish. J Nanomater 4:7593–7599

    CAS  Google Scholar 

  31. Li FL, Wang P, Huang X, Young DJ, Wang HF, Braunstein P, Lang JP (2021) Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew Chem Int Ed 58:7051–7056

    Article  Google Scholar 

  32. Wang M, Xu Y, Peng CK, Chen SY, Lin YG, Hu Z, Sun L, Ding S, Pao CW, Shao Q (2021) Huang, X., Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution. J Am Chem Soc 143:16512–16518

    Article  CAS  PubMed  Google Scholar 

  33. Mesbah A, Rabu P, Sibille R, Lebègue S, Mazet T, Malaman B, François M (2014) From hydrated Ni3(OH)2(C8H4O4)2(H2O)4 to anhydrous Ni2(OH)2(C8H4O4): impact of structural transformations on magnetic properties. Inorg Chem 53:872–881

    Article  CAS  PubMed  Google Scholar 

  34. Li FL, Wang P, Huang X, Young DJ, Wang HF, Braunstein P, Large-Scale LJP (2019) Bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew Chem Int Ed 58:7051–7056

    Article  CAS  Google Scholar 

  35. Wang M, Xu Y, Peng CK, Chen SY, Lin YG, Hu Z, Sun L, Ding S, Pao CW, Shao Q, Huang X (2021) Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution. J Am Chem Soc 143:16512–16518

    Article  CAS  PubMed  Google Scholar 

  36. Du, J.; Xu, S.; Sun, L.; Li, F (2019) Iron carbonate hydroxide templated binary metal-organic frameworks for highly efficient electrochemical water oxidation, chenmical communication 55:14773–14776.

  37. Lu Q, Su T, Shang Z, Jin D, Shu Y, Xu Q, Hu X (2021) Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection. Biosens Bioelectron 184:113229

    Article  CAS  PubMed  Google Scholar 

  38. Boughrara L, Zaoui F, Guezzoul M, Sebba FZ, Bounaceur B, Kada SO (2022) New alginic acid derivatives ester for methylene blue dye adsorption: kinetic, isotherm, thermodynamic, and mechanism study. Int J Biol Macromol 205:651–663

    Article  CAS  PubMed  Google Scholar 

  39. Long D, Li M, Wang H, Wang H, Chai Y, Yuan R (2019) A photoelectrochemical biosensor based on fullerene with methylene blue as a sensitizer for ultrasensitive DNA detection. Biosens Bioelectron 142:111579

    Article  CAS  PubMed  Google Scholar 

  40. Hichem H, Djamila A, Hania A (2013) Optical, electrical and photoelectrochemical characterization of electropolymerized poly methylene blue on fluorine doped tin oxide conducting glass. Electrochim Acta 106:69–74

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 22074055 and 22374061), and the Natural Science Foundation of Jiangsu Province (No. BK20200104), Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Liu or Tianyan You.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 402 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Dong, N., Liu, S. et al. Photoelectrochemical aptasensing with methylene blue filled Ni-MOFs nanocomposite by spatial confinement for microcystin-LR detection. Microchim Acta 191, 108 (2024). https://doi.org/10.1007/s00604-024-06185-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06185-8

Keywords

Navigation