Skip to main content
Log in

Colorimetric detection of alkaline phosphatase based on the off-on effect of light-responsive oxidase mimicking activity of covalent organic framework (Cu-TpBpy-COF) under near-neutral condition

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A colorimetric strategy has been developed for the detection of alkaline phosphatase (ALP) activity based on the off-on effect of the catalytic activity of light-responsive oxidase mimics covalent organic framework (Cu-TpBpy-COF) in near-neutral condition. Cu-TpBpy-COF can effectively catalyze the oxidation of the colorless substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by oxygen to form a blue oxidized product (oxTMB) with an absorption peak at 652 nm. Cu2+ is the active center of Cu-TpBpy-COF and pyrophosphate (PPi) can form a complex with Cu2+ to weaken the catalytic activity of Cu-TpBpy-COF. In the presence of ALP, PPi is hydrolyzed into orthophosphates (Pi) with low affinity to Cu2+, thus resulting in absorbance restoration. The absorbance at 652 nm is related to ALP activity in the linear range 10–150 U·L−1 with a detection limit of 7.17 U·L−1. The recoveries of ALP in serum samples are in the range 94.7~107.0% with relative standard deviations (RSD) lower than 5%. The decisive role of Cu2+ on the enhancing catalytic activities of Cu-TpBpy-COF in neutral condition was verified by TpBpy-COF and TpBD-COF as controls, in which the main difference between them is that TpBpy-COF contains pyridine nitrogen. Upon Cu2+ modification, Cu-TpBpy-COF has better catalytic activity than TpBpy-COF in a broader pH range because of the in situ generation of Cu+ under irradiation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Xiao F, Yu Y, Wu Y, Tian L, Zhao G, Pang H, Du J (2021) Restoring the oxidase-like activity of His@AuNCs for the determination of alkaline phosphatase. Biosensors (Basel) 11(6):174

    Article  CAS  PubMed  Google Scholar 

  2. Song H, Li Z, Peng Y, Li X, Xu X, Pan J, Niu X (2019) Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity. Analyst 144(7):2416–2422

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Li X, Fu Y, Ding X, Li Z, Zhu G, Fan J (2021) Magnetically controlled 2D nano-DNA fluorescent biosensor for selective and sensitive detection of alkaline phosphatase activity. Sens Actuators B Chem 327:128914

    Article  CAS  Google Scholar 

  4. Liu J, Meng H, Zhang L, Li S, Chen J, Zhang Y, Li J, Qu L, Li Z (2021) Dual-readout test strips platform for portable and highly sensitive detection of alkaline phosphatase in human serum samples. Chin Chem Lett 32:3421–3425

    Article  CAS  Google Scholar 

  5. Xu Y, Lin Y, Xing Y, Chu N, Chen X (2022) A covalent organic framework (COF)-MnO2 based dual signal sensing platform for sensitive alkaline phosphatase activity detection via dynamic regulating the mimicking oxidase content. Arab J Chem 15(3):103643

    Article  CAS  Google Scholar 

  6. Deng J, Yu P, Wang Y, Mao L (2015) Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal Chem 87(5):3080–3086

    Article  CAS  PubMed  Google Scholar 

  7. Han Y, Chen J, Li Z, Chen H, Qiu H (2020) Recent progress and prospects of alkaline phosphatase biosensor based on fluorescence strategy. Biosens Bioelectron 148:111811

    Article  CAS  PubMed  Google Scholar 

  8. Ma JL, Yin BC, Wu X, Ye BC (2016) Copper-mediated DNA-scaffolded silver nanocluster on-off switch for detection of pyrophosphate and alkaline phosphatase. Anal Chem 88(18):9219–9225

    Article  CAS  PubMed  Google Scholar 

  9. Xu J, Liang C, Gao W, Gao Z, Wu Z, Song YY (2022) Photocatalysis engineered hydrophilic reactors on hydrophobic paper for the visual and colorimetric assay of alkaline phosphatase activity. Microchim Acta 189(9):343

    Article  CAS  Google Scholar 

  10. Wang DE, You S, Huo W, Han X, Xu H (2022) Colorimetric detection of alkaline phosphatase activity based on pyridoxal phosphate–induced chromatic switch of polydiacetylene nano-liposomes. Microchim Acta 189(2):70

    Article  CAS  Google Scholar 

  11. Wang C, Gao J, Cao Y, Tan H (2018) Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal Chim Acta 1004:74–81

    Article  CAS  PubMed  Google Scholar 

  12. Tian F, Zhou J, Ma J, Liu S, Jiao B, He Y (2019) MnO2 nanosheets as oxidase mimics for colorimetric detection of alkaline phosphatase activity. Microchim Acta 186(7):408

    Article  Google Scholar 

  13. Hu Q, Zhou B, Li F, Kong J, Zhang X (2016) Turn-on colorimetric platform for dual activity detection of acid and alkaline phosphatase in human whole blood. Chem Asian J 11(21):3040–3045

    Article  CAS  PubMed  Google Scholar 

  14. Qi W, Fu Y, Zhao M, He H, Tian X, Hu L, Zhang Y (2020) Electrochemiluminescence resonance energy transfer immunoassay for alkaline phosphatase using p-nitrophenyl phosphate as substrate. Anal Chim Acta 1097:71–77

    Article  CAS  PubMed  Google Scholar 

  15. Kong W, Tan Q, Guo H, Sun H, Qin X, Qu F (2019) Photoelectrochemical determination of the activity of alkaline phosphatase by using a CdS@graphene conjugate coupled to CoOOH nanosheets for signal amplification. Microchim Acta 186(2):1–8

    Article  Google Scholar 

  16. Lu Y, Cao C, Pan X, Liu Y, Cui D (2022) Structure design mechanisms and inflammatory disease applications of nanozymes. Nanoscale 15(1):14–40

    Article  PubMed  Google Scholar 

  17. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4):1004–1076

    Article  CAS  PubMed  Google Scholar 

  18. Yang Q, Luo M, Liu K, Cao H, Yan H (2020) Covalent organic frameworks for photocatalytic applications. Appl Catal B 276:119174

    Article  CAS  Google Scholar 

  19. Jin P, Niu X, Zhang F, Dong K, Dai H, Zhang H, Wang W, Chen H, Chen X (2020) Stable and reusable light-responsive reduced covalent organic framework (COF-300-AR) as a oxidase-mimicking catalyst for GSH detection in cell lysate. ACS Appl Mater Interfaces 12(18):20414–20422

    Article  CAS  PubMed  Google Scholar 

  20. Li G, Ma W, Yang Y, Zhong C, Huang H, Ouyang D, He Y, Tian W, Lin J, Lin Z (2021) Nanoscale covalent organic frameworks with donor-acceptor structures as highly efficient light-responsive oxidase-like mimics for colorimetric detection of glutathione. ACS Appl Mater Interfaces 13:49482–49489

    Article  CAS  PubMed  Google Scholar 

  21. Li G, Tian W, Zhong C, Yang Y, Lin Z (2022) Construction of donor-acceptor heterporous covalent organic frameworks as photoregulated oxidase-like nanozymes for sensing signal amplification. ACS Appl Mater Interfaces 14:21750–21757

    Article  CAS  PubMed  Google Scholar 

  22. Peng Y, Huang M, Chen L, Gong C, Li N, Huang Y, Cheng C (2022) Ultrathin covalent organic framework nanosheet-based photoregulated metal-free oxidase-like nanozyme. Nano Res 15(10):8783–8790

    Article  CAS  ADS  Google Scholar 

  23. Liu CX, Zhou ZW, Yu Y, Wei YJ, Cai CX, Wang N, Yu XQ (2023) Well-deaigned highly conjugated covalent organic frameworks as light responsive oxidase mimic for effective detection of uric acid. Small Struct 4:2200321

    Article  CAS  Google Scholar 

  24. Zhang J, Wu S, Lu X, Wu P, Liu J (2019) Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett 19(5):3214–3220

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Niu X, Xu X, Li X, Pan J, Qiu F, Zhao H, Lan M (2018) Surface charge engineering of nanosized CuS via acidic amino acid modification enables high peroxidase-mimicking activity at neutral pH for one-pot detection of glucose. Chem Commun 54(95):13443–13446

    Article  CAS  Google Scholar 

  26. Wang X, Gong A, Luo W, Wang H, Lin C, Liu XY, Lin Y (2018) Remote activation of nanoparticulate biomimetic activity by light triggered pH-jump. Chem Commun 54(62):8641–8644

    Article  CAS  Google Scholar 

  27. Li S, Pang E, Gao C, Chang Q, Hu S, Li N (2020) Cerium-mediated photooxidation for tuning pH-dependent oxidase-like activity. Chem Eng J 397:125471

    Article  CAS  Google Scholar 

  28. Cui WR, Zhang CR, Jiang W, Liang RP, Qiu JD (2019) Covalent organic framework nanosheets for fluorescence sensing via metal coordination. ACS Appl Nano Mater 2(8):5342–5349

    Article  CAS  Google Scholar 

  29. Sun Q, Aguila B, Perman J, Nguyen N, Ma S (2016) Flexibility matters: cooperative active sites in covalent organic framework and threaded ionic polymer. J Am Chem Soc 138(48):15790–15796

    Article  CAS  PubMed  Google Scholar 

  30. Yang S, Hu W, Zhang X, He P, Pattengale B, Liu C, Cendejas M, Hermans I, Zhang X, Zhang J, Huang J (2018) 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J Am Chem Soc 140(44):14614–14618

    Article  CAS  PubMed  Google Scholar 

  31. Cui WR, Zhang CR, Jiang W, Liang RP, Wen SH, Peng D, Qiu JD (2019) Covalent organic framework nanosheet-based ultrasensitive and selective colorimetric sensor for trace Hg2+ detection. ACS Sustain Chem Eng 7(10):9408–9415

    Article  CAS  Google Scholar 

  32. Aiyappa HB, Thote J, Shinde DB, Banerjee R, Kurungot S (2016) Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem Mater 28(12):4375–4379

    Article  CAS  Google Scholar 

  33. Xiong Y, Su L, He X, Duan Z, Zhang Z, Chen Z, Xie W, Zhu D, Luo Y (2017) Colorimetric determination of copper ions based on regulation of the enzyme-mimicking activity of covalent triazine frameworks. Sens Actuators B Chem 253:384–391

    Article  CAS  Google Scholar 

  34. Dong J, Song L, Yin JJ, He W, Wu Y, Gu N, Zhang Y (2014) Co3O4 nanoparticles with multi-enzyme activities and their application in immunohistochemical assay. ACS Appl Mater Interfaces 6(3):1959–1970

    Article  CAS  PubMed  Google Scholar 

  35. Liu W, Tian L, Du J, Wu J, Liu Y, Wu G, Lu X (2020) Triggered peroxidase-like activity of Au decorated carbon dots for colorimetric monitoring of Hg2+ enrichment in Chlorella vulgaris. Analyst 145(16):5500–5507

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (No. 21874060).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with the contributions from all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Hongli Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 4034 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Zhu, A., Wu, M. et al. Colorimetric detection of alkaline phosphatase based on the off-on effect of light-responsive oxidase mimicking activity of covalent organic framework (Cu-TpBpy-COF) under near-neutral condition. Microchim Acta 191, 93 (2024). https://doi.org/10.1007/s00604-023-06128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06128-9

Keywords

Navigation