Skip to main content
Log in

Development of a C-reactive protein quantification method based on flow rate measurement of an ink solution pushed out by oxygen gas generated by catalase reaction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel determination method for protein biomarkers based on on-chip flow rate measurement was developed using a microchip with organic photodiodes (OPDs). This quantitative method is based on the flow rate measurement of an ink solution pushed out by oxygen gas generated through catalase reaction. The amount of oxygen gas generated in the sample reservoir is dependent on the concentration of the analyte; therefore, the flow rate of the ink solution is also dependent on the concentration of the analyte. The concentration of the analyte can thus be estimated by measurement of the ink solution flow rate. The ink solution flow rate was estimated by measuring the migration time of the ink solution between two points using two OPDs placed below the microchannel. The principle of this method was demonstrated by the measurement of catalase using the microchip. In addition, the developed method was applied to the determination of C-reactive protein (CRP), a biomarker of inflammation, based on a catalase-linked immunosorbent assay (C-LISA). The limit of detection for CRP was 0.20 µg/mL. The method was also applied to the determination of CRP in human serum, and the quantitative values obtained by this method were in excellent agreement with those obtained by the conventional enzyme-linked immunosorbent assay (ELISA) method. The developed method does not require a photodetector with high sensitivity and is thus capable of downsizing; therefore, this will be useful for on-site analyses such as point-of-care testing and field measurements.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the main texts and its supplementary information file.

References

  1. Tang RT, Liu LN, Zhang SF, He XC, Li XJ, Xu F, Ni YH, Li F (2019) A review on advances in methods for modification of paper supports for use in point-of-care testing. Microchim Acta 186:521. https://doi.org/10.1007/s00604-019-3626-z

    Article  CAS  Google Scholar 

  2. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT (2015) Emerging technologies for next-generation point-of-care testing. Trends Biotechnol 33:692–705. https://doi.org/10.1016/j.tibtech.2015.09.001

    Article  CAS  PubMed  Google Scholar 

  3. Zarei M (2017) Portable biosensing devices for point-of-care diagnostics: recent developments and applications. Trends Anal Chem 91:26–41. https://doi.org/10.1016/j.trac.2017.04.001

    Article  CAS  Google Scholar 

  4. Uddin MJ, Bhuiyan NH, Shim JS (2021) Fully integrated rapid microfluidic device translated from conventional 96-well ELISA kit. Sci Rep 11:1986. https://doi.org/10.1038/s41598-021-81433-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mitchell KR, Esene JE, Woolley AT (2021) Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Anal Bioanal Chem 414:167–180. https://doi.org/10.1007/s00216-021-03553-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Warren AD, Kwong GA, Wood DK (2014) Bhatia SN (2014) Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc Natl Acad Sci 111:3671–3676. https://doi.org/10.1073/pnas.1314651111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thiha A, Ibrahim F (2015) A colorimetric enzyme-linked immunosorbent assay (ELISA) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors 15:11431–11441. https://doi.org/10.3390/s150511431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu D, Li X, Zhou J, Liu S, Tian T, Song Y, Zhu Z, Zhou L, Ji T, Yang C (2017) A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. Biosens Bioelectron 96:332–338. https://doi.org/10.1016/j.bios.2017.04.044

    Article  CAS  PubMed  Google Scholar 

  9. Wang S, Tasoglu S, Chen PZ, Chen M, Akbas R, Wach S, Ozdemir CI, Gurkan UA, Giguel FF, Kuritzkes DR, Demirc U (2014) Micro-a-fluidics ELISA for rapid CD4 cell count at the point-of-care. Sci Rep 4:3796. https://doi.org/10.1038/srep03796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu L, Li C, Liu Y, Gao J, Wang W, Gan Y (2009) Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs. Lab Chip 9:1243–1247. https://doi.org/10.1039/B816018J

    Article  CAS  PubMed  Google Scholar 

  11. Yamauchi M, Tokeshi M, Yamaguchi J, Fukuzawa T, Hattori A, Hibara A, Kitamori T (2006) Miniaturized thermal lens and fluorescence detection system for microchemical chips. J Chromatogr A 1106:89–93. https://doi.org/10.1016/j.chroma.2005.09.091

    Article  CAS  PubMed  Google Scholar 

  12. Mawatari K, Naganuma Y, Shimoide K (2005) Portable thermal lens spectrometer with focusing system. Anal Chem 77:687–692. https://doi.org/10.1021/ac049015w

    Article  CAS  PubMed  Google Scholar 

  13. Cate DM, Dungchai W, Cunningham JC, Volckens J, Henry CS (2013) Simple, distance-based measurement for paper analytical devices. Lab Chip 13:2397–2404. https://doi.org/10.1039/C3LC50072A

    Article  CAS  PubMed  Google Scholar 

  14. Nilghaz A, Ballerini DR, Fang XY, Shen W (2014) Semiquantitative analysis on microfluidic thread-based analytical devices by ruler. Sens Actuators B 191:586–594. https://doi.org/10.1016/j.snb.2013.10.023

    Article  CAS  Google Scholar 

  15. Chatterjee D, Mansfield DS, Woolley AT (2014) Microfluidic devices for label-free and non-instrumented quantitation of unamplified nucleic acids by flow distance measurement. Anal Methods 6:8173–8179. https://doi.org/10.1039/C4AY01845A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhong M, Lee CY, Croushore CA, Sweedler JV (2012) Label-free quantitation of peptide release from neurons in a microfluidic device with mass spectrometry imaging. Lab Chip 12:2037–2045. https://doi.org/10.1039/C2LC21085A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Song Y, Zhang Y, Bernard PE, Reuben JM, Ueno NT, Arlinghaus RB, Zu Y, Qin L (2012) Multiplexed volumetric bar-chart chip for point-of-care diagnostics. Nat Commun 3:1283–1291. https://doi.org/10.1038/ncomms2292

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Xuan J, Song Y, Wang P, Qin L (2015) A microfluidic platform with digital readout and ultra-low detection limit for quantitative point-of-care diagnostics. Lab Chip 15:3300–3306. https://doi.org/10.1039/C5LC00529A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song Y, Xia X, Wu X, Wang P, Qin L (2014) Integration of platinum nanoparticles with a volumetric bar-chart chip for biomarker assays. Angew Chem Int Ed 53:12451–12455. https://doi.org/10.1002/anie.201404349

    Article  CAS  Google Scholar 

  20. Chen YT, Yang JT (2015) Detection of an amphiphilic biosample in a paper microchannel based on length. Biomed Microdevices 17:52. https://doi.org/10.1007/s10544-015-9954-9

    Article  CAS  Google Scholar 

  21. Xie Y, Wei X, Yang Q, Guan Z, Liu D, Liu X, Zhou L, Zhu Z, Lin Z, Yang C (2016) A Shake&Read distance-based microfluidic chip as a portable quantitative readout device for highly sensitive point-of-care testing. Chem Commun 52(2016):13377–13380. https://doi.org/10.1039/C6CC07928H

    Article  CAS  Google Scholar 

  22. Li Z, Chen H, Wang P (2019) Lateral flow assay ruler for quantitative and rapid point-of-care testing. Analyst 144:3314. https://doi.org/10.1039/C9AN00374F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tian T, Li J, Song Y, Zhou L, Zhu Z, Yang C (2016) Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab Chip 16:1139–1151. https://doi.org/10.1039/C5LC01562F

    Article  CAS  PubMed  Google Scholar 

  24. Ohira S, Toda K (2006) Miniature liquid flow sensor and feedback control of electroosmotic and pneumatic flows for a micro gas analysis system. Anal Sci 22:61–65. https://doi.org/10.2116/analsci.22.61

    Article  CAS  PubMed  Google Scholar 

  25. Zarifi MH, Sadabadi H, Hejazi SH, Daneshmand M, Sanati-Nezhad A (2018) Noncontact and nonintrusive microwave-microfluidic flow sensor for energy and biomedical engineering. Sci Rep 8:139. https://doi.org/10.1038/s41598-017-18621-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morioka K, Osashima M, Azuma N, Qu K, Hemmi A, Shoji A, Murakami H, Teshima N, Umemura T, Uchiyama K, Nakajima H (2022) Development of a fluorescence microplate reader using an organic photodiode array with a large light receiving area. Talanta 238:122994. https://doi.org/10.1016/j.talanta.2021.122994

    Article  CAS  PubMed  Google Scholar 

  27. Qureshi A, Gurbuz Y, Niazi J (2012) Biosensors for cardiac biomarkers detection: a review. Sens Actuators B 171–172:62–76. https://doi.org/10.1016/j.snb.2012.05.077

    Article  CAS  Google Scholar 

  28. Yang Y, Lin H, Wang J, Shiesh S, Lee G (2009) An integrated microfluidic system for C-reactive protein measurement. Biosens Bioelectron 24:3091–3096. https://doi.org/10.1016/j.bios.2009.03.034

    Article  CAS  PubMed  Google Scholar 

  29. Fakanya WM, Tothill IE (2014) Detection of the inflammation biomarker C-reactive protein in serum samples: towards an optimal biosensor formula. Biosensors 4:340–357. https://doi.org/10.3390/bios4040340

    Article  PubMed  PubMed Central  Google Scholar 

  30. Qu K, Morioka K, Azuma N, Osashima M, Hemmi A, Shoji A, Murakami H, Teshima N, Umemura T, Kato S, Kasai N, Uchiyama K, Nakajima H (2020) Development of a chemiluminescence analysis system using a microfluidic device capable of autonomous liquid transfer and an organic photodiode detector. Bunseki Kagaku 69:31–39. https://doi.org/10.2116/bunsekikagaku.69.31

    Article  CAS  Google Scholar 

  31. Kumagai N, Morioka K, Nakamura K, Chigira D, Kitaya N, Kato Y, Shoji A (2021) Development of a simple ELISA system using a jungle gym structure as an antibody-immobilization substrate. Bunseki Kagaku 70:721–728. https://doi.org/10.2116/bunsekikagaku.70.721

    Article  CAS  Google Scholar 

  32. Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci B Polym Phys 38:415–434. https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3%3c415::AID-POLB8%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  33. Ishihara R, Hasegawa K, Hosokawa K, Maeda M (2015) Bunseki Kagaku 64:319–328. Detection of proteins and nucleic acids with laminar flow-assisted dendritic amplification on power-free microfluidic chip. https://doi.org/10.2116/bunsekikagaku.64.319

  34. Morioka K, Sato H, Kuboyama M, Yanagida A, Shoji A (2021) Quantification of CRP in human serum using a handheld fluorescence detection system for capillary-based ELISA. Talanta 224:151725. https://doi.org/10.1016/j.talanta.2020.121725

    Article  CAS  Google Scholar 

  35. Lin Y, Li Z, Xia Y, Huang J, Huang H, Xia Z, Lin T, Li S, Cai X, Xiao Z, Jiang W (2013) Serum C-reactive protein (CRP) as a simple and independent prognostic factor in extranodal natural killer/T-Cell lymphoma. Nasal Type PloS One 8:e64158. https://doi.org/10.1371/journal.pone.0064158

    Article  CAS  PubMed  Google Scholar 

  36. McMillan DC, Canna K, McArdle CS (2003) Systemic inflammatory response predicts survival following curative resection of colorectal cancer. Brit J Surg 90:215–219. https://doi.org/10.1002/bjs.4038

    Article  CAS  PubMed  Google Scholar 

  37. Lv Y, Wu R, Feng K, Li J, Mao Q, Yuan H, Shen H, Chai X, Li LS (2017) Highly sensitive and accurate detection of C-reactive protein by CdSe/ZnS quantum dot-based fluorescence-linked immunosorbent assay. J Nanobiotechnol 15:35. https://doi.org/10.1186/s12951-017-0267-4

    Article  CAS  Google Scholar 

  38. Lv Y, Li J, Wu R, Wang G, Wu M, Shen H, Li LS (2018) Silica-encapsulated quantum dots for highly efficient and stable fluorescence immunoassay of C-reactive protein. Biochem Eng J 137:344–351. https://doi.org/10.1016/j.bej.2018.06.016

    Article  CAS  Google Scholar 

  39. Oh SY, Heo NS, Bajpai VK, Jang S-C, Ok G, Cho Y, Huh YS (2019) Development of a cuvette-based LSPR sensor chip using a plasmonically active transparent strip. Front Bioeng Biotechnol 7:299. https://doi.org/10.3389/fbioe.2019.00299

    Article  PubMed  PubMed Central  Google Scholar 

  40. Thangamuthu M, Santschi C, Martin OJF (2018) Label-free electrochemical immunoassay for C-reactive protein. Biosensors 8:34. https://doi.org/10.3390/bios8020034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by KAKENHI Grants-in-Aid (Nos. 21H03578 and 22K14709) from the Japan Society for the Promotion Science (JSPS), the Tokyo Metropolitan Government, and Tokyo Metropolitan Government Infectious Disease Research Project.

Author information

Authors and Affiliations

Authors

Contributions

KQ: Validation, investigation, data curation, visualization.

KM: Conceptualization, methodology, investigation, data curation, writing (original draft), visualization, project administration, funding acquisition.

KN: Validation, investigation, visualization.

SY: Writing—review and editing.

AH: Resources, supervision.

AS: Writing—review and editing.

HN: Conceptualization, writing (review and editing), project administration, funding acquisition.

Corresponding authors

Correspondence to Kazuhiro Morioka or Hizuru Nakajima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 702 KB)

Supplementary file2 (MP4 1153 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, K., Morioka, K., Nakamura, K. et al. Development of a C-reactive protein quantification method based on flow rate measurement of an ink solution pushed out by oxygen gas generated by catalase reaction. Microchim Acta 191, 24 (2024). https://doi.org/10.1007/s00604-023-06108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06108-z

Keywords

Navigation