Skip to main content
Log in

Smartphone-integrated paper-based biosensor for sensitive fluorometric ethanol quantification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The development of fluorometric paper-based analytical devices (fPADs) integrated with smartphone for fluorometric quantification of ethanol in an instrument-free and portable setup is described. The NAD+-dependent alcohol dehydrogenase immobilized within chitosan modified paper substate was utilized as a bio-recognition element and enzymatically generated NADH was used as a fluorescent probe. 3D-printed imaging setup which houses a paper chip holder and UV-light emitting device (LED) was developed for rapid, accurate capture of the fluorescent images. The biocompatible chitosan layer covering the paper provides a feasible environment for enzyme immobilization and enhances the fluorescence signal. The developed fPADs exhibited high sensitivity for ethanol detection and has a linear range for ethanol detection from 17 µM to 8.75 mM (R2 =0.99). Additionally, the fPADs were applied to quantify ethanol in four different wine samples including red, white, rose, and sparkling wines successfully. Moreover, the fPADs produce reproducible signals without loss of enzyme activity for at least 14 days and ~80% activity remained till 28 days. Thus, the proposed approach can provide a facile, affordable, portable, and instrument-free tool for the onsite quantification of ethanol in real samples and is applicable for food quality controls.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zarei M (2017) Portable biosensing devices for point-of-care diagnostics: recent developments and applications. TrAC - Trends Anal Chem 91:26–41. https://doi.org/10.1016/j.trac.2017.04.001

    Article  CAS  Google Scholar 

  2. Sohrabi H, Hemmati A, Majidi MR et al (2021) Recent advances on portable sensing and biosensing assays applied for detection of main chemical and biological pollutant agents in water samples: a critical review. TrAC - Trends Anal Chem 143:116344. https://doi.org/10.1016/j.trac.2021.116344

    Article  CAS  Google Scholar 

  3. Yuanyuan Pu, Dolores Pérez-Marín NO, Garrido-Varo A (2021) Recent advances in portable and handheld NIR spectrometers and applications in milk, cheese and dairy powders. Foods 10:2377

    Article  Google Scholar 

  4. Noviana E, Ozer T, Carrell CS et al (2021) Microfluidic paper-based analytical devices: from design to applications. Chem Rev 121:11835–11885. https://doi.org/10.1021/acs.chemrev.0c01335

    Article  CAS  PubMed  Google Scholar 

  5. Silva-Neto HA, Arantes IVS, Ferreira AL, do Nascimento GHM, Meloni GN, de Araujo WR, Paixão TRLC, Coltro WKT (2023) Recent advances on paper-based microfluidic devices for bioanalysis. TrAC - Trends. Anal Chem 158:116893. https://doi.org/10.1016/j.trac.2022.116893

  6. Thepchuay Y, Sonsa-ard T, Ratanawimarnwong N (2020) Paper-based colorimetric biosensor of blood alcohol with in-situ headspace separation of ethanol from whole blood. Anal Chim Acta 1103:115–121. https://doi.org/10.1016/j.aca.2019.12.043

    Article  CAS  PubMed  Google Scholar 

  7. Santhosh M, Park T (2022) Semi-enclosed paper sensor for highly sensitive and selective detection of proline. Anal Chim Acta 1231:340399. https://doi.org/10.1016/j.aca.2022.340399

    Article  CAS  PubMed  Google Scholar 

  8. Wang S, Ge L, Song X et al (2012) Paper-based chemiluminescence ELISA: lab-on-paper based on chitosan modified paper device and wax-screen-printing. Biosens Bioelectron 31:212–218. https://doi.org/10.1016/j.bios.2011.10.019

    Article  CAS  PubMed  Google Scholar 

  9. Chaiyo S, Mehmeti E, Siangproh W et al (2018) Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine – ionic liquid – graphene composite. Biosens Bioelectron 102:113–120. https://doi.org/10.1016/j.bios.2017.11.015

    Article  CAS  PubMed  Google Scholar 

  10. Chinnadayyala SR, Park J, Le HTN et al (2019) Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosens Bioelectron 126:68–81. https://doi.org/10.1016/j.bios.2018.10.038

    Article  CAS  PubMed  Google Scholar 

  11. You DJ, Park TS, Yoon JY (2013) Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron 40:180–185. https://doi.org/10.1016/j.bios.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  12. Park TS, Li W, McCracken KE, Yoon JY (2013) Smartphone quantifies Salmonella from paper microfluidics. Lab Chip 13:4832–4840. https://doi.org/10.1039/c3lc50976a

    Article  CAS  PubMed  Google Scholar 

  13. Cinti S, Basso M, Moscone D, Arduini F (2017) A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal Chim Acta 960:123–130. https://doi.org/10.1016/j.aca.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  14. Roda A, Michelini E, Zangheri M et al (2016) Smartphone-based biosensors: a critical review and perspectives. TrAC - Trends Anal Chem 79:317–325. https://doi.org/10.1016/j.trac.2015.10.019

    Article  CAS  Google Scholar 

  15. Shen Y, Wei Y, Zhu C et al (2022) Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord Chem Rev 458:214442. https://doi.org/10.1016/j.ccr.2022.214442

    Article  CAS  Google Scholar 

  16. Tang RH, Liu LN, Zhang SF, He XC, Li XJ, Xu F, Ni YH, Li F (2019) A review on advances in methods for modification of paper supports for use in point-of-care testing. Microchim Acta. 186:521. https://doi.org/10.1007/s00604-019-3626-z

  17. Li C, Xu X, Wang F et al (2023) Portable smartphone platform integrated with paper strip-assisted fluorescence sensor for ultrasensitive and visual quantitation of ascorbic acid. Food Chem 402:134222. https://doi.org/10.1016/j.foodchem.2022.134222

    Article  CAS  PubMed  Google Scholar 

  18. Yin C, Liu T, Wu M et al (2022) Smartphone-integrated dual-emission fluorescence sensing platform based on carbon dots and aluminum ions-triggered aggregation-induced emission of copper nanoclusters for on-site visual detecting sulfur ions. Anal Chim Acta 1232:340460. https://doi.org/10.1016/j.aca.2022.340460

    Article  CAS  PubMed  Google Scholar 

  19. Chu S, Wang H, Du Y et al (2020) Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: visual monitoring of glutathione in human serum for health prognosis. ACS Sustain Chem Eng 8:8175–8183. https://doi.org/10.1021/acssuschemeng.0c00690

    Article  CAS  Google Scholar 

  20. Kaur K, Sahu BK, Swami K et al (2022) Phone camera nano-biosensor using mighty sensitive transparent reusable upconversion paper. ACS Appl Mater Interfaces 14:27507–27514. https://doi.org/10.1021/acsami.2c06894

    Article  CAS  Google Scholar 

  21. Melman Y, Katz E, Smutok O (2022) Phenylalanine biosensor based on a nanostructured fiberglass paper support and fluorescent output signal readable with a smartphone. Microchem J 179:107497. https://doi.org/10.1016/j.microc.2022.107497

    Article  CAS  Google Scholar 

  22. Zhang W, Tian T, Peng L, Zhou H, Zhang H, Chen H, Yang F (2022) Analytical device integrated with smartphone: fluorescent and colorimetric dual-mode detection of β glucosidase activity. Biosensors 12:893. https://doi.org/10.3390/bios12100893

  23. Lu Z, Chen M, Li M et al (2022) Smartphone-integrated multi-color ratiometric fluorescence portable optical device based on deep learning for visual monitoring of Cu 2 + and thiram. Chem Eng J 439:135686. https://doi.org/10.1016/j.cej.2022.135686

    Article  CAS  Google Scholar 

  24. Jin B, Li Z, Zhao G et al (2022) Upconversion fluorescence-based paper disc for multiplex point-of-care testing in water quality monitoring. Anal Chim Acta 1192:339388. https://doi.org/10.1016/j.aca.2021.339388

    Article  CAS  PubMed  Google Scholar 

  25. Thungon PD, Wang H, Vagin SI et al (2022) A fluorescent alcohol biosensor using a simple micropad based detection scheme. Front Sensors 3:1–12. https://doi.org/10.3389/fsens.2022.840130

    Article  Google Scholar 

  26. Melman Y, Wells PK, Katz E, Smutok O (2022) A universal nanostructured bioanalytical platform for NAD+-dependent enzymes based on the fluorescent output reading with a smartphone. Talanta 243:123325. https://doi.org/10.1016/j.talanta.2022.123325

    Article  CAS  PubMed  Google Scholar 

  27. Parker RW, Wilson DJ, Mace CR (2020) Open software platform for automated analysis of paper-based microfluidic devices. Sci Rep 10:1–10. https://doi.org/10.1038/s41598-020-67639-6

    Article  CAS  Google Scholar 

  28. Parween S, Bhatnagar I, Bhosale S et al (2020) Cross-linked chitosan biofunctionalized paper-based microfluidic device towards long term stabilization of blood typing antibodies. Int J Biol Macromol 163:1233–1239. https://doi.org/10.1016/j.ijbiomac.2020.07.075

    Article  CAS  PubMed  Google Scholar 

  29. Spiridon I, Teacă C-A, Bodîrlău R (2011) Structural changes evidenced by ftir spectroscopy in cellulosic materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioResources 6:400–413

    Article  CAS  Google Scholar 

  30. Xu Y, Sherwood J, Qin Y et al (2014) The role of protein characteristics in the formation and fluorescence of Au nanoclusters. Nanoscale 6:1515–1524. https://doi.org/10.1039/c3nr06040c

    Article  CAS  PubMed  Google Scholar 

  31. Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, Duchen MR (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:3936. https://doi.org/10.1038/ncomms4936

  32. Santana-Jiménez LA, Márquez-Lucero A, Osuna V et al (2018) Naked-eye detection of glucose in saliva with bienzymatic paper-based sensor. Sensors (Switzerland) 18:1–12. https://doi.org/10.3390/s18041071

    Article  CAS  Google Scholar 

  33. Chu S, Wang H, Ling X et al (2020) A portable smartphone platform using a ratiometric fluorescent paper strip for visual quantitative sensing. ACS Appl Mater Interfaces 12:12962–12971. https://doi.org/10.1021/acsami.9b20458

    Article  CAS  PubMed  Google Scholar 

  34. Fu X, Zhang H, Xiao J, Liu S (2012) Enzymatic detection of ethanol based on H2O2-sensitive quantum dots. J Cent South Univ 19:3040–3045. https://doi.org/10.1007/s11771-012-1376-8

    Article  CAS  Google Scholar 

  35. Wen Z, Song S, Wang C et al (2019) Large-scale synthesis of dual-emitting-based visualization sensing paper for humidity and ethanol detection. Sensors Actuators, B Chem 282:9–15. https://doi.org/10.1016/j.snb.2018.11.041

    Article  CAS  Google Scholar 

  36. Hu X, Cao H, Dong W, Tang J (2021) Ratiometric fluorescent sensing of ethanol based on copper nanoclusters with tunable dual emission. Talanta 233:122480. https://doi.org/10.1016/j.talanta.2021.122480

    Article  CAS  PubMed  Google Scholar 

  37. Melman Y, Wells PK, Katz E, Smutok O (2022) A universal nanostructured bioanalytical platform for NAD + -dependent enzymes based on the fluorescent output reading with a smartphone. Talanta 243:123325. https://doi.org/10.1016/j.talanta.2022.123325

    Article  CAS  PubMed  Google Scholar 

  38. Bordenave N, Grelier S, Pichavant F, Coma V (2007) Water and moisture susceptibility of chitosan and paper-based materials: structure-property relationships. J Agric Food Chem 55:9479–9488. https://doi.org/10.1021/jf070595i

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Project No. 320001-4), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tusan Park.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 599 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, M., Park, T. Smartphone-integrated paper-based biosensor for sensitive fluorometric ethanol quantification. Microchim Acta 190, 477 (2023). https://doi.org/10.1007/s00604-023-06063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06063-9

Keywords

Navigation