Skip to main content
Log in

Preparation of SERS base membrane with cellulose compound dopamine and determination of hypochlorite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Flexible silver substrates were made by in situ reduction of silver nanoparticles in bacterial cellulose membranes using the unique advantage of dopamine. Subsequently, we modified the substrate with 4-mercaptophenol (4-MP), a molecule capable of specifically recognizing ClO, and its corresponding SERS signal changes with the concentration of hypochlorite, thus allowing the quantitative detection of ClO content. The method showed a negative linear correlation (R2 = 0.9567) with the SERS intensity at 1077 cm−1 over the concentration range 0.5–100 µM, and the detection limit was 0.15 µM. The RSD of the SERS intensity at 1077 cm−1 under five batches was 4.2%, which proved the good reproducibility of P-BCM-Ag NP-MP. Finally, the P-BCM-Ag NPs were used for the detection of hypochlorite in cell contents, artificial urine, and clinical serum samples, utilizing spike experiments in all three environments. The recoveries were in the range 90–110% indicating the accuracy of the method for the detection of hypochlorite and validating the promising application of this assay for practical detection in intricate biological samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Hammerschmidt S, Vogel T, Jockel S, Gessner C, Seyfarth H-J, Gillissen A, Wirtz H (2007) Protein kinase c inhibition attenuates hypochlorite-induced acute lung injury. Respir Med 101:1205–1211. https://doi.org/10.1016/j.rmed.2006.11.003

    Article  PubMed  Google Scholar 

  2. Özyürek M, Bekdeşer B, Güçlü K, Apak R (2012) Resorcinol as a spectrofluorometric probe for the hypochlorous acid scavenging activity assay of biological samples. Anal Chem 84:9529–9536. https://doi.org/10.1021/ac302369p

    Article  CAS  PubMed  Google Scholar 

  3. An Z, Zhao Z, Zhao L, Yue Q, Li K, Zhao B, Miao J, Su L (2020) The novel HOCl fluorescent probe can induced a549 apoptosis by inhibiting chlorination activity of MPO. Bioorg Med Chem Lett 30:127394. https://doi.org/10.1016/j.bmcl.2020.127394

    Article  CAS  PubMed  Google Scholar 

  4. Xu Q, Lee K-A, Lee S, Lee KM, Lee W-J, Yoon J (2013) A highly specific fluorescent probe for hypochlorous acid and its application in imaging microbe-induced HOCl production. J Am Chem Soc 135:9944–9949. https://doi.org/10.1021/ja404649m

    Article  CAS  PubMed  Google Scholar 

  5. Kim PA, Choe D, So H, Park S, Suh B, Jeong S, Kim K-T, Kim C, Harrison RG (2021) A selective fluorescence sensor for hypochlorite used for the detection of hypochlorite in zebrafish. Spectrochim Acta Part A 261:120059. https://doi.org/10.1016/j.saa.2021.120059

    Article  CAS  Google Scholar 

  6. Chen B, Fu H, Lv Y, Li X, Han Y (2018) An oxidative cyclization reaction based fluorescent “turn-on” probe for highly selective and rapid detection of hypochlorous acid. Tetrahedron Lett 59:1116–1120. https://doi.org/10.1016/j.tetlet.2018.02.018

    Article  CAS  Google Scholar 

  7. Hoebe RA, Van Oven CH, Gadella TWJ, Dhonukshe PB, Van Noorden CJF, Manders EMM (2007) Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotechnol 25:249–253. https://doi.org/10.1038/nbt1278

    Article  CAS  PubMed  Google Scholar 

  8. Peteu SF, Bose T, Bayachou M (2013) Polymerized hemin as an electrocatalytic platform for peroxynitrite’s oxidation and detection. Anal Chim Acta 780:81–88. https://doi.org/10.1016/j.aca.2013.03.057

    Article  CAS  PubMed  Google Scholar 

  9. Zhang L-J, Zhao X, Yang D, Jia Z-Z, Han X, Sun L-Q, Yu L-L, Liu J-T, He X-D, Miao J-Y, Zhao B-X (2018) A new water-soluble and mitochondria-targeted fluorescence probe for ratiometric detection of hypochlorous acid in living cells. Sens Actuators B 276:8–12. https://doi.org/10.1016/j.snb.2018.08.071

    Article  CAS  Google Scholar 

  10. Zhang W, Guo C, Liu L, Qin J, Yang C (2011) Naked-eye visible and fluorometric dual-signaling chemodosimeter for hypochlorous acid based on water-soluble p-methoxyphenol derivative. Org Biomol Chem 9:5560–5563. https://doi.org/10.1039/C1OB05550J

    Article  CAS  PubMed  Google Scholar 

  11. Hao J, Meng X (2017) Recent advances in SERS detection of perchlorate. Front Chem Sci Eng 11:448–464. https://doi.org/10.1007/s11705-017-1611-9

    Article  CAS  Google Scholar 

  12. Lin Z, He L (2019) Recent advance in SERS techniques for food safety and quality analysis: a brief review. Curr Opin Food Sci 28:82–87. https://doi.org/10.1016/j.cofs.2019.10.001

    Article  Google Scholar 

  13. Chen Y, An Q, Teng K, Liu C, Sun F, Li G (2023) Application of SERS in in-vitro biomedical detection. Chem – Asian J 18:e202201194. https://doi.org/10.1002/asia.202201194

    Article  CAS  PubMed  Google Scholar 

  14. Ogundare SA, van Zyl WE (2019) A review of cellulose-based substrates for sers: fundamentals, design principles, applications. Cellulose 26:6489–6528. https://doi.org/10.1007/s10570-019-02580-0

    Article  CAS  Google Scholar 

  15. Zhang Q, Xu G, Guo N, Wang T, Song P, Xia L (2021) In-situ synthesis of methyl cellulose film decorated with silver nanoparticles as a flexible surface-enhanced raman substrate for the rapid detection of pesticide residues in fruits and vegetables. Materials. https://doi.org/10.3390/ma14195750

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jin J, Guo Z, Fan D, Zhao B (2023) Spotting the driving forces for SERS of two-dimensional nanomaterials. Mater Horiz. https://doi.org/10.1039/D2MH01241C

    Article  PubMed  Google Scholar 

  17. Deshmukh AR, Dikshit PK, Kim BS (2022) Green in situ immobilization of gold and silver nanoparticles on bacterial nanocellulose film using punica granatum peels extract and their application as reusable catalysts. Int J Biol Macromol 205:169–177. https://doi.org/10.1016/j.ijbiomac.2022.02.064

    Article  CAS  PubMed  Google Scholar 

  18. Wu C-N, Fuh S-C, Lin S-P, Lin Y-Y, Chen H-Y, Liu J-M, Cheng K-C (2018) Tempo-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromol 19:544–554. https://doi.org/10.1021/acs.biomac.7b01660

    Article  CAS  Google Scholar 

  19. Cao S, Yang Y, Zhang S, Liu K, Chen J (2021) Multifunctional dopamine modification of green antibacterial hemostatic sponge. Mater Sci Eng C 127:112227. https://doi.org/10.1016/j.msec.2021.112227

    Article  CAS  Google Scholar 

  20. Liao J, He S, Guo S, Luan P, Mo L, Li J (2019) Antibacterial performance of a mussel-inspired polydopamine-treated Ag/graphene nanocomposite material. Materials. https://doi.org/10.3390/ma12203360

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang Z, Si T, Liu J, Zhou G (2019) In-situ grown silver nanoparticles on nonwoven fabrics based on mussel-inspired polydopamine for highly sensitive serscarbaryl pesticides detection. Nanomaterials. https://doi.org/10.3390/nano9030384

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ass BAP, Frollini E, Heinze T (2004) Studies on the homogeneous acetylation of cellulose in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate. Macromol Biosci 4:1008–1013. https://doi.org/10.1002/mabi.200400088

    Article  CAS  PubMed  Google Scholar 

  23. Li D, Jiang D, Xie J (2015) Controllable synthesis of fluorapatite microcrystals decorated with silver nanoparticles and their optical properties. RSC Adv 5:12392–12396. https://doi.org/10.1039/C4RA13072C

    Article  CAS  Google Scholar 

  24. Xu LQ, Chen JC, Wang R, Neoh K-G, Kang E-T, Fu GD (2013) A poly(vinylidene fluoride)-graft-poly(dopamine acrylamide) copolymer for surface functionalizable membranes. RSC Adv 3:25204–25214. https://doi.org/10.1039/C3RA42782J

    Article  CAS  Google Scholar 

  25. Xie Y, Yue L, Zheng Y, Zhao L, Liang C, He W, Liu Z, Sun Y, Yang Y (2019) The antibacterial stability of poly(dopamine) in-situ reduction and chelation nano-Ag based on bacterial cellulose network template. Appl Surf Sci 491:383–394. https://doi.org/10.1016/j.apsusc.2019.06.096

    Article  CAS  Google Scholar 

  26. Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, Sol CWO, Papakonstantinou I, Parkin IP (2017) Sensitive and specific detection of explosives in solution and vapour by surface-enhanced raman spectroscopy on silver nanocubes. Nanoscale 9:16459–16466. https://doi.org/10.1039/C7NR05057G

    Article  CAS  PubMed  Google Scholar 

  27. Wang W, Zhang L, Li L, Tian Y (2016) A single nanoprobe for ratiometric imaging and biosensing of hypochlorite and glutathione in live cells using surface-enhanced Raman scattering. Anal Chem 88:9518–9523. https://doi.org/10.1021/acs.analchem.6b02081

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Wang J, Geng Y, Yue J, Shi W, Liang C, Xu W, Xu S (2021) Single-cell oxidative stress events revealed by a renewable SERS nanotip. ACS Sens 6:1663–1670. https://doi.org/10.1021/acssensors.1c00395

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Xie X, Zhang L, Yao K, Huang Y (2022) Optoplasmonic MOFs film for SERS detection. Spectrochim Acta Part A 278:121362. https://doi.org/10.1016/j.saa.2022.121362

    Article  CAS  Google Scholar 

  30. Chen C, Wang J, Lu D, You R, She Q, Chen J, Feng S, Lu Y (2022) Early detection of lung cancer via biointerference-free, target microrna-triggered core–satellite nanocomposites. Nanoscale 14:8103–8111. https://doi.org/10.1039/D1NR07670A

    Article  CAS  PubMed  Google Scholar 

  31. Wonjung L, Youn H, Bae J, Kim D-H (2021) Solid-phase colorimetric sensor for hypochlorite. Analyst 146:2301–2306. https://doi.org/10.1039/D0AN02448A

    Article  CAS  PubMed  Google Scholar 

  32. Xie L, Zheng R, Hu H, Li L (2022) Determination of hypochlorite and bisulfite in water by bifunctional colorimetric sensor based on octupolar conjugated merocyanine dyes. Microchem J 172:106931. https://doi.org/10.1016/j.microc.2021.106931

    Article  CAS  Google Scholar 

  33. Fu X, Wu J, Xu H, Wan P, Fu H, Mei Q (2021) Luminescence nanoprobe in the near-infrared-ii window for ultrasensitive detection of hypochlorite. Anal Chem 93:15696–15702. https://doi.org/10.1021/acs.analchem.1c03582

    Article  CAS  PubMed  Google Scholar 

  34. Erdemir S, Malkondu S, Kocyigit O, Alici O (2022) Antharacene-modified isophorone derivative with NIR-emission for hypochlorite detection by the oxidative decomposition reaction and its applications. Measurement 193:111007. https://doi.org/10.1016/j.measurement.2022.111007

    Article  Google Scholar 

  35. Guo D, Wu S, Xu X, Niu X, Li X, Li Z, Pan J (2019) A novel label-free hypochlorite amperometric sensor based on target-induced oxidation of benzeneboronic acid pinacol ester. Chem Eng J 373:1–7. https://doi.org/10.1016/j.cej.2019.05.027

    Article  CAS  Google Scholar 

  36. Sun J, Liu R, Tang J, Zhang Z, Zhou X, Liu J (2015) Controlled assembly of gold nanostructures on a solid substrate via imidazole directed hydrogen bonding for high performance surface enhance Raman scattering sensing of hypochlorous acid. ACS Appl Mater Interfaces 7:16730–16737. https://doi.org/10.1021/acsami.5b04449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Fujian Provincial Department of Science and Technology guiding Project (No. 2020Y0019); Industry-University Cooperation Project of Fujian Provincial Department of Science and Technology (2020N5006); Achievement Transformation Project of Fuzhou Science and Technology Bureau (2020-GX-20); Fushimei Agricultural and rural maker space (Minkexing (2019) No.2); and Program for Innovative Research Team in Science and Technology in Fujian Province University.

Author information

Authors and Affiliations

Authors

Contributions

Ruiyun You: supervision, writing—review and editing; Qian Huang: collected experimental samples and perform the experiments, formal analysis, analyzed the experimental data, writing—original draft, and data curation; Ziyi Lin: analyzed the experimental data. Wenxi Wang: formal analysis; Jiansen Lie: formal analysis; Jingbo Chen: methodology and validation; Guifeng Zhang: supervision and validation; Yudong Lu: supervision, conceptualization, and funding acquisition.

Corresponding authors

Correspondence to Guifeng Zhang or Yudong Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• In situ reduction of silver nanoparticles on bacterial cellulose membranes using dopamine.

• Prepared flexible silver substrates with good SERS enhancement.

• The limit of detection of the hypochlorite is 0.15 µM.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, R., Huang, Q., Lin, Z. et al. Preparation of SERS base membrane with cellulose compound dopamine and determination of hypochlorite. Microchim Acta 190, 447 (2023). https://doi.org/10.1007/s00604-023-06006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06006-4

Keywords

Navigation